Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Exposure of platelet fibrinogen receptors by ADP and epinephrine.
J S Bennett, G Vilaire
J S Bennett, G Vilaire
Published November 1, 1979
Citation Information: J Clin Invest. 1979;64(5):1393-1401. https://doi.org/10.1172/JCI109597.
View: Text | PDF
Research Article

Exposure of platelet fibrinogen receptors by ADP and epinephrine.

  • Text
  • PDF
Abstract

The role of fibrinogen as a cofactor for platelet aggregation was examined by measuring the binding of 125I-labeled human fibrinogen to gel-filtered human platelets both before and after platelet stimulation by ADP and epinephrine. Platelet stimulation by ADP resulted in the rapid, reversible binding of fibrinogen to receptors on the platelet surface. Fibrinogen binding increased as the concentration of ADP was increased from 0.1 to 2 microM, reaching a plateau at higher ADP concentrations. Binding occurred only after platelet stimulation and in the presence of divalent cations. However, fibrinogen binding did not occur to ADP-stimulated platelets from three patients with Glanzmann's thrombasthenia. Analysis of fibrinogen binding as a function of increasing fibrinogen concentration demonstrated that maximal platelet stimulation exposed approximately or equal to 45,000 binding sites per platelet with a dissociation constant of 80--170 nM. These fibrinogen binding parameters were essentially the same whether ADP or epinephrine was the platelet-stimulating agent. Thus, these studies demonstrate that platelet stimulation by ADP and epinephrine exposes a limited number of fibrinogen receptors on the platelet surface. Furthermore, these data suggest that the fibrinogen molecules bound to the platelet as a consequence of platelet stimulation are directly involved in the platelet aggregation response.

Authors

J S Bennett, G Vilaire

×

Full Text PDF | Download (1.60 MB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts