Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI109579

Induction of Ouabain-resistant Mutation and Sister Chromatid Exchanges in Chinese Hamster Cells with Chemical Carcinogens Mediated by Human Pulmonary Macrophages

Ih Chang Hsu, Curtis C. Harris, and Maria Yamaguchi

Human Tissue Studies Section, Laboratory of Experimental Pathology, Division of Cancer Cause and Prevention, National Cancer Institute, Bethesda, Maryland 20205

Department of Pathology, School of Medicine, University of Maryland, Baltimore, Maryland 21201

Department of Surgery, Washington Veterans Administration Hospital, Washington, D. C. 20422

Find articles by Hsu, I. in: JCI | PubMed | Google Scholar

Human Tissue Studies Section, Laboratory of Experimental Pathology, Division of Cancer Cause and Prevention, National Cancer Institute, Bethesda, Maryland 20205

Department of Pathology, School of Medicine, University of Maryland, Baltimore, Maryland 21201

Department of Surgery, Washington Veterans Administration Hospital, Washington, D. C. 20422

Find articles by Harris, C. in: JCI | PubMed | Google Scholar

Human Tissue Studies Section, Laboratory of Experimental Pathology, Division of Cancer Cause and Prevention, National Cancer Institute, Bethesda, Maryland 20205

Department of Pathology, School of Medicine, University of Maryland, Baltimore, Maryland 21201

Department of Surgery, Washington Veterans Administration Hospital, Washington, D. C. 20422

Find articles by Yamaguchi, M. in: JCI | PubMed | Google Scholar

Published November 1, 1979 - More info

Published in Volume 64, Issue 5 on November 1, 1979
J Clin Invest. 1979;64(5):1245–1252. https://doi.org/10.1172/JCI109579.
© 1979 The American Society for Clinical Investigation
Published November 1, 1979 - Version history
View PDF
Abstract

Pulmonary macrophages (PAM) metabolically activated benzo[a]pyrene [B(a)P] and its proximate carcinogenic metabolite, (±)trans 7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (7,8-diol), to ultimate mutagens that were detected in cocultivated Chinese hamster V79 cells. Increases in the frequency of ouabainresistant (Or) mutations and sister chromatid exchanges were found in V79 cells only when they were cocultivated with both PAM and the chemical procarcinogens. 7,8-Diol caused higher frequencies of both Or mutations and sister chromatid exchanges than did the parent compound, B(a)P. When metabolically activated by PAM the mean Or mutation frequency caused by B(a)P was 9 Or mutants/106 surviving V79 cells per 106 PAM and a 10-fold interindividual variation (range, 2-21) was found. The mean Or mutation frequency caused by 7,8-diol was 64 and a ninefold interindividual variation (range, 14-120) was found. In the absence of PAM, the Or mutation frequency in V79 cells was one or less Or mutant per 106 survivors. 7,8-Benzoflavone, an inhibitor of mixed function oxidases, reduced the frequencies of Or mutations and of sister chromatid exchanges in V79 cells caused by 7,8-diol and B(a)P. As expected 7,8-benzoflavone did not influence the frequency of Or mutations caused by one of the ultimate mutagens derived from B(a)P and 7,8-diol, (±)7β, 8α-dihydroxy-9α, 10α-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene. These data are consistant with the hypothesis that PAM may play a role in the activation of environmental chemical procarcinogens.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1245
page 1245
icon of scanned page 1246
page 1246
icon of scanned page 1247
page 1247
icon of scanned page 1248
page 1248
icon of scanned page 1249
page 1249
icon of scanned page 1250
page 1250
icon of scanned page 1251
page 1251
icon of scanned page 1252
page 1252
Version history
  • Version 1 (November 1, 1979): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts