Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Citations to this article

Hormonal stimulation of erythropoietin production and erythropoiesis in anephric sheep fetuses.
E D Zanjani, M Banisadre
E D Zanjani, M Banisadre
Published November 1, 1979
Citation Information: J Clin Invest. 1979;64(5):1181-1187. https://doi.org/10.1172/JCI109571.
View: Text | PDF
Research Article

Hormonal stimulation of erythropoietin production and erythropoiesis in anephric sheep fetuses.

  • Text
  • PDF
Abstract

The effect of testosterone (DT) and thyroxin (L-T4) on erythropoiesis and erythropoietin (Ep) production was studied in control and nephrectomized sheep fetuses beginning at about 100 d of gestation. Fetuses were given injections of either 1.2 mg/d x 13 of L-T4, 12 mg, once every 5 d x 3 of DT or the vehicle alone. Fetal plasma samples for Ep determinations were obtained before and at intervals after the start of the treatment. Reticulocyte and hematocrit levels, and the percent erythrocyte-59Fe uptake values were used to assess erythropoiesis in each fetus. No Ep was detected in plasmas of control fetuses, while significant amounts of Ep were present in plasma obtained from DT- and L-T4-treated intact fetuses. Bilateral nephrectomy did not diminish the Ep response to DT and L-T4. In both intact and nephrectomized fetuses, treatment with DT resulted in the production of significantly greater amounts of Ep than L-T4. The rise in Ep in all groups was accompanied by increases in reticulocytes (2.2 +/- 0.2% vs L-T4:8.1 +/- 0.4% and DT:7.6 +/- 0.7%), percent erythrocyte-59Fe uptake (20.5 +/- 2.9% vs. L-T4:36.7 +/- 3.8% and DT:39.1 +/- 4.0%) and hematocrit (31.2 +/- 2% vs. L-T4:41.8 +/- 3% and DT:48.6 +/- 4.2%). The enhanced erythropoiesis in all groups of nephrectomized fetuses was dependent upon the presence of Ep, because the administration of anti-Ep to these fetuses resulted in the suppression of erythropoiesis in all three groups. These data demonstrate that (a) DT and L-T4 are effective promoters of extrarenal Ep production, thereby enhancing erythropoiesis in intact and nephrectomized fetuses; (b) DT is a stronger stimulus of extrarenal Ep formation than L-T4; and (c) Ep is required for the expression of the erythropoietic effects of L-T4 and DT.

Authors

E D Zanjani, M Banisadre

×

Loading citation information...
Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts