Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Phenobarbital-induced Alterations in the Metabolism of [3H]Vitamin D3 by the Perfused Rachitic Rat Liver In Vitro
Daniel T. Baran, … , Irene Karl, Louis V. Avioli
Daniel T. Baran, … , Irene Karl, Louis V. Avioli
Published October 1, 1979
Citation Information: J Clin Invest. 1979;64(4):1112-1117. https://doi.org/10.1172/JCI109550.
View: Text | PDF
Research Article

Phenobarbital-induced Alterations in the Metabolism of [3H]Vitamin D3 by the Perfused Rachitic Rat Liver In Vitro

  • Text
  • PDF
Abstract

Anticonvulsant therapy of seizure disorders in man is associated with the development of complications involving bone and mineral metabolism including hypocalcemia, elevated serum immunoreactive parathyroid hormone levels, and increased amounts of unmineralized bone or osteoid. The latter has been attributed to a reduction in serum-25-hydroxycholecalciferol levels resulting from increased hepatic metabolism of vitamin D. Using an in vitro recycling hepatic perfusion system, we have demonstrated that 5 d of phenobarbital treatment increases the hepatic production of [3H]25-hydroxyvitamin D3 (4.3±0.3 vs. 3.3±0.2%/h, P <0.025) without affecting the biliary excretion of radioactivity. Furthermore, rachitic livers perfused with blood obtained from animals treated with phenobarbital for 5 d also manifested an increase in [3H]25-hydroxyvitamin D3 production (4.6±0.5 vs. 3.3±0.2%/h, P < 0.02). Addition of phenobarbital or its major metabolite, p-hydroxyphenobarbital, directly to the perfusion apparatus had no effect on [3H]25-hydroxyvitamin D3 production. Phenobarbital treatment was also attended by a decrease in the intrahepatic content of [3H]vitamin D3 (11.7±0.4 vs. 17.5±0.7 dpm/mg liver protein, P < 0.001) without alterations in the content of [3H]25-hydroxyvitamin D3. The data collectively suggest that the increased hepatic conversion of [3H]vitamin D3 to [3H]25-hydroxyvitamin D3 attending phenobarbital treatment is secondary to stimulation of the hepatic 25-hydroxylation system(s) by a metabolite of phenobarbital other than p-hydroxyphenobarbital and/or by metabolic alterations resulting from phenobarbital therapy.

Authors

Daniel T. Baran, Aurora C. Fausto, Marilyn L. Roberts, Irene Karl, Louis V. Avioli

×

Full Text PDF | Download (972.09 KB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts