Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI109432

Membrane Fluidity in Human and Mouse Chediak-Higashi Leukocytes

Richard A. Haak, Leah M. Ingraham, Robert L. Baehner, and Laurence A. Boxer

Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46223

Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46223

Find articles by Haak, R. in: PubMed | Google Scholar

Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46223

Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46223

Find articles by Ingraham, L. in: PubMed | Google Scholar

Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46223

Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46223

Find articles by Baehner, R. in: PubMed | Google Scholar

Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46223

Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46223

Find articles by Boxer, L. in: PubMed | Google Scholar

Published July 1, 1979 - More info

Published in Volume 64, Issue 1 on July 1, 1979
J Clin Invest. 1979;64(1):138–144. https://doi.org/10.1172/JCI109432.
© 1979 The American Society for Clinical Investigation
Published July 1, 1979 - Version history
View PDF
Abstract

Polymorphonuclear leukocytes from humans and mice with the Chediak-Higashi syndrome were characterized by spin label electron spin resonance spectrometry. Our results suggest that cells from afflicted mice and humans have membranes more fluid than controls. Order parameters for a spin label that probes near the membrane surface were 0.652 for normals and 0.645 for two Chediak-Higashi patients. Cells from Chediak-Higashi mice showed similar differences, as did isolated plasma membrane fractions. An increased membrane fluidity was also detected with a spin label that probes deeper in the bilayer. In vitro treatment of Chediak-Higashi mouse cells with 0.01 M ascorbate increased the order parameter to normal levels. In vitro incubation of mouse Chediak-Higashi cells with glucose oxidase increased the order parameter, similar to the effect of ascorbate. This increase was abolished when catalase was added to the incubation medium. In vitro incubation with dibutyryl cyclic guanosine monophosphate (1 μM to 0.1 mM) did not normalize order parameters. These results indicate that fluidity of Chediak-Higashi cell membranes was affected by treatments expected to alter the oxidation: reduction potential of the environment but was not affected by treatments expected to alter the ratio of intracellular cyclic nucleotides. The latter treatment would affect microtubule assembly. Therefore, it appears that the membrane fluidity abnormalities as demonstrated by electron spin resonance and the earlier demonstrated microtubule dysfunctions characteristic of Chediak-Higashi cells are coexisting defects and are probably not directly related.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 138
page 138
icon of scanned page 139
page 139
icon of scanned page 140
page 140
icon of scanned page 141
page 141
icon of scanned page 142
page 142
icon of scanned page 143
page 143
icon of scanned page 144
page 144
Version history
  • Version 1 (July 1, 1979): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts