Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Kinetic model for production and metabolism of very low density lipoprotein triglycerides. Evidence for a slow production pathway and results for normolipidemic subjects.
L A Zech, … , D Steinberg, M Berman
L A Zech, … , D Steinberg, M Berman
Published June 1, 1979
Citation Information: J Clin Invest. 1979;63(6):1262-1273. https://doi.org/10.1172/JCI109421.
View: Text | PDF
Research Article

Kinetic model for production and metabolism of very low density lipoprotein triglycerides. Evidence for a slow production pathway and results for normolipidemic subjects.

  • Text
  • PDF
Abstract

A model for the synthesis and degradation of very low density lipoprotein triglyceride (VLDL-TG) in man is proposed to explain plasma VLDL-TG radioactivity data from studies conducted over a 48-h interval after injection of glycerol labeled with 14C, 3H, or both. The curve describing the radioactivity of plasma VLDL triglycerides reaches a maximum at about 2 h, after which the decay is biphasic in all cases; the late curvature becoming evident only after 8--12 h. To fit the complex curve, it was necessary to postulate two pathways for the incorporation of plasma glycerol into VLDL-TG, one much slower than the other. A process of stepwise delipidation of VLDL in the plasma compartment, previously proposed for VLDL apoprotein models, was also necessary. Predicted VLDL-TG synthesis rates calculated with this model can differ significantly from those based on experiments of shorter duration in which the slow VLDL-TG component is not apparent. The results of these studies strongly support the interpretation that the late, slow component of the VLDL-TG activity curve is predominantly due to the slowly turning-over precursor compartment in the conversion pathway and is not due either to a slow compartment in the labeled precursor, plasma free glycerol, or to an exchange of plasma VLDL-TG with an extravascular compartment. It also cannot, in these studies, be attributed to a slowly turning-over VLDL-TG moiety in the plasma. The model was tested with data from 59 studies including normal subjects and patients with obesity and(or) various forms of hyperlipoproteinemia. Good fits were obtained in all cases, and the estimated parameter values and their uncertainties for 13 normolipemic nonobese subjects are presented. Sensitivty testing was carried out to determine how critical various parameter estimations are to the assumptions introduced in the modeling.

Authors

L A Zech, S M Grundy, D Steinberg, M Berman

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 121 4
PDF 47 17
Scanned page 330 8
Citation downloads 42 0
Totals 540 29
Total Views 569
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts