Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI109420

Lysosomal association of internalized 125I-insulin in isolated rat hepatocytes. Direct demonstration by quantitative electron microscopic autoradiography.

J L Carpentier, P Gorden, P Freychet, A Le Cam, and L Orci

Find articles by Carpentier, J. in: PubMed | Google Scholar

Find articles by Gorden, P. in: PubMed | Google Scholar

Find articles by Freychet, P. in: PubMed | Google Scholar

Find articles by Le Cam, A. in: PubMed | Google Scholar

Find articles by Orci, L. in: PubMed | Google Scholar

Published June 1, 1979 - More info

Published in Volume 63, Issue 6 on June 1, 1979
J Clin Invest. 1979;63(6):1249–1261. https://doi.org/10.1172/JCI109420.
© 1979 The American Society for Clinical Investigation
Published June 1, 1979 - Version history
View PDF
Abstract

Quantitative electron microscopic autoradiographic studies in cultured human lymphocytes and isolated rat hepatocytes have demonstrated that labeled insulin initially localizes to the plasma membrane and is subsequently internalized to a limited region of the peripheral cytoplasm. When 0.5 nm 125I-insulin is incubated with isolated rat hepatocytes, binding to the plasma membrane occurs at both 20 degrees C and 37 degrees C. Under steady-state binding conditions approximately equal to 30--40% of the labeled hormone is internalized to a distance of approximately equal to 15% of the radius of the cell. When the localization of the internalized labeled material is analyzed, by 2--5 min of incubation at 37 degrees C there is a fivefold preferential association of autoradiographic grains with lysosomal structures, and by 30--60 min of incubation at 37 degrees C there is a 10-fold preferential association. When the cell-associated radioactivity is extracted and filtered on Sephadex G-50 at each time point of incubation, radioactivity elutes predominantly in the position of 125I-insulin and is predominantly in the position of 125I-insulin and is predominantly trichloracetic acid precipitable, bindable to talc, and rebindable to liver membranes. With increasing time of association at 37 degrees C the initial rate and absolute amount of labeled material dissociable from the cell is reduced. With increasing time of dissociation both the cell-associated radioactivity and the radioactivity released into the incubation medium is progressively degraded. These data demonstrate that in isolated rat hepatocytes labeled insulin initially localizes to the plasma membrane, is progressively internalized, and associates preferentially with lysosomal structures. These events may provide a mechanism that links cell surface binding to the degradation of insulin and to insulin-induced loss of its specific receptor.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1249
page 1249
icon of scanned page 1250
page 1250
icon of scanned page 1251
page 1251
icon of scanned page 1252
page 1252
icon of scanned page 1253
page 1253
icon of scanned page 1254
page 1254
icon of scanned page 1255
page 1255
icon of scanned page 1256
page 1256
icon of scanned page 1257
page 1257
icon of scanned page 1258
page 1258
icon of scanned page 1259
page 1259
icon of scanned page 1260
page 1260
icon of scanned page 1261
page 1261
Version history
  • Version 1 (June 1, 1979): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts