Abstract

The development of immune deposits on the subepithelial surface of the glomerular capillary wall was studied in isolated rat kidneys perfused at controlled perfusion pressure, pH, temperature, and flow rates with recirculating oxygenated perfusate containing bovine serum albumin (BSA) in buffer and sheep antibody to rat proximal tubular epithelial cell brush border antigen (Fx1A). Control kidney were perfused with equal concentrations of non-antibody immunoglobulin (Ig)G. Renal function was monitored by measuring inulin clearance, sodium reabsorption, and urine flow as well as BSA excretion and fractional clearance. Perfused kidneys were studied by light, immunofluorescence, and electron microscopy. All kidneys perfused with anti-Fx1A developed diffuse, finely granular deposits of IgG along the glomerular capillary wall by immunofluorescence. Electron microscopy revealed these deposits to be localized exclusively in the subepithelial space and slit pores. Similar deposits were produced in a nonrecirculating perfusion system, thereby excluding the formation of immune complexes in the perfusate caused by renal release of tubular antigen. Control kidneys perfused with nonantibody IgG did not develop glomerular immune deposits. Renal function and BSA excretion were the same in experimental and control kidneys. Glomerular deposits in antibody perfused kidneys were indistinguishable from deposits in rats injected with anti-Fx1A or immunized with Fx1A to produce autologous immune complex nephropathy. These studies demonstrate that subepithelial immune deposits can be produced in the isolated rat kidney by perfusion with specific antibody to Fx1A in the absence of circulating immune complexes. In this model deposits result from in situ complex formation rather than circulating immune complex deposition.

Authors

W G Couser, D R Steinmuller, M M Stilmant, D J Salant, L M Lowenstein

×

Other pages: