Abstract

The present studies were designed to further investigate the possibility of heterogeneity of nephron function during Ringer loading in the rat, and to determine the specific nephron segment responsible for this finding. As in previous studies from this laboratory with smaller rats (50-125 g), net addition of sodium between late distal tubule and papillary base (6.9 vs. 10.4% of the filtered load, respectively, P <0.005) was found in more mature rats (170-230 g). In contrast, there was net reabsorption of sodium between these two segments in nonvolume-expanded animals, 1.70 vs. 0.45% of the filtered sodium load, P <0.005. Because nephron heterogeneity of sodium transport during extracellular volume expansion is the most likely explanation for these findings, further studies were performed to determine the specific juxtamedullary nephron segment responsible for the net addition pattern between late distal tubule and papillary base in Ringer-loaded animals. First, a comparison was made of sodium delivery to the late proximal tubule of superficial nephrons vs. the delivery rate to the bend of Henle's loop of juxtamedullary nephrons in both hydropenia and Ringer loading. Fractional sodium delivery was quite comparable between the superficial and juxtamedullary nephrons in both hydropenia and Ringer loading although the absolute level was much greater in both groups of nephrons in the Ringer studies. Chlorothiazide (15 mg/kg loading and 15 mg/kg per h) given during Ringer loading markedly increased late distal sodium delivery, 19% of the filtered load, but did not prevent net addition of sodium at the papillary base. In contrast, furosemide (5 mg/kg loading and 5/mg/kg per h) given during Ringer loading completely reversed the segmental pattern, 35.5 and 28.8% at late distal tubule and papillary base, respectively, P <0.005. These studies demonstrate that the net addition of sodium between late distal tubule and papillary base during Ringer loading is not limited to immature rats and that the segmental pattern does not occur in non-volume-expanded animals. Further, the reversal of the net addition pattern with furosemide, but not chlorothiazide, and the comparable proximal nephron delivery rates in Ringer loading suggest that the loop of Henle of juxtamedullary nephrons reabsorbs less sodium than the same portion of superficial nephrons in this setting. A model is proposed to explain this finding.

Authors

Richard W. Osgood, H. John Reineck, Jay H. Stein

×

Other pages: