Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Gentamicin blockade of slow Ca++ channels in atrial myocardium of guinea pigs.
H R Adams, L R Durrett
H R Adams, L R Durrett
Published August 1, 1978
Citation Information: J Clin Invest. 1978;62(2):241-247. https://doi.org/10.1172/JCI109122.
View: Text | PDF
Research Article

Gentamicin blockade of slow Ca++ channels in atrial myocardium of guinea pigs.

  • Text
  • PDF
Abstract

Cardiac dysfunction is occasionally detected in patients undergoing treatment with amino-glycoside antibiotics, however, the mechanism responsible for the negative inotropic effect of these agents has not been identified. In the present investigation electrically driven left atria of guinea pigs were used to study the effects of gentamicin on calcium ion (Ca++)-dependent contractile events in heart muscle isolated from in vivo influences. When atria were first inactivated by excess potassium ion (K+; 22mM) and contractions were then restored by isoproterenol (an experimental model that accentuates the contractile dependence of myocardial fibers on influx of Ca++ through specific "slow channels" of the sarcolemma), the cardiac depressant activity of gentamicin (0.1 mM) was profoundly augmented. Conversely, the negative inotropic effect of tetrodotoxin (23.5 micron) was abolished by the same experimental conditions. Also, gentamicin (1 mM) and La+++ (0.5 mM) markedly decreased the positive inotropic response to increased frequency of stimulation; whereas, D600 (1.05 micron) converted the positive frequency-force relationship to a negative relationship. Present data indicate a direct cardiac depressant action of gentamicin, and suggest that this antibiotic adversely affects either the transport system responsible for Ca++ movement through slow channels of the sarcolemma, the availability of Ca++ for translocation to these sites, or both.

Authors

H R Adams, L R Durrett

×

Full Text PDF

Download PDF (940.34 KB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts