Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Intestinal Secretion Induced by Vasoactive Intestinal Polypeptide: A COMPARISON WITH CHOLERA TOXIN IN THE CANINE JEJUNUM IN VIVO
Guenter J. Krejs, … , Nicholas W. Read, John S. Fordtran
Guenter J. Krejs, … , Nicholas W. Read, John S. Fordtran
Published May 1, 1978
Citation Information: J Clin Invest. 1978;61(5):1337-1345. https://doi.org/10.1172/JCI109051.
View: Text | PDF

Intestinal Secretion Induced by Vasoactive Intestinal Polypeptide: A COMPARISON WITH CHOLERA TOXIN IN THE CANINE JEJUNUM IN VIVO

  • Text
  • PDF
Abstract

The effect of vasoactive intestinal polypeptide (VIP) on intestinal water and electrolyte transport and transmucosal potential difference was investigated in the dog jejunum in vivo and compared to secretion induced by cholera toxin. Isolated jejunal loops were perfused with a plasma-like electrolyte solution. VIP (0.08 μg/kg per min) was administered directly into the superior mesenteric artery by continuous infusion over 1 h. From a dye dilution method, it was estimated that a mean plasma VIP concentration of 12,460 pg/ml reached the loops. VIP caused secretion of water and electrolytes; for example, chloride: control, 8 μeq/cm per h absorption; VIP, 92 μeq/cm per h secretion. A marked increase in transmucosal potential difference (control, −1.0 mV; VIP, −5.9 mV, lumen negative) occurred within 1 min after starting VIP infusion. Analysis of unidirectional fluxes showed increased plasma-to-lumen flux of sodium and chloride and decreased lumen-to-plasma flux of sodium. Chloride and bicarbonate were actively secreted against an electrochemical gradient. Although sodium secretion occurred down an electrochemical gradient, flux ratio analysis suggested a component of active sodium secretion. VIP caused a slight increase in protein output into the loops; light microscopy revealed capillary dilatation and closed intercellular spaces. The effect of VIP was readily reversible. Except for the delayed onset of secretion, the effect of cholera toxin was qualitatively similar to VIP; however, capillary dilatation and increased protein output were not noted with cholera toxin.

Authors

Guenter J. Krejs, Ronald M. Barkley, Nicholas W. Read, John S. Fordtran

×

Full Text PDF

Download PDF (1.48 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts