Abstract

The mechanism involved in 5-methyltetrahydrofolate uptake by human cells is poorly understood. To more clearly elucidate this physiologically important process, transport of the vitamin was studied in human erythrocytes. 5-methyltetrahydrofolate uptake was found to increase with reticulocytosis, but measurable incorporation occurred in erythrocyte suspensions depleted of reticulocytes, leukocytes, and platelets, indicating uptake by mature erythrocytes. Incubation of erythrocytes with increasing concentrations of [14C]5-methyltetrahydrofolate resulted in increasing uptake but decreasing percentage incorporation, consistent with saturation of a carrier system. Both influx and efflux phases of uptake were temperature dependent, with almost no transport at 4°C. Uptake of [14C]5-methytetrahydrofolate was effectively inhibited by unlabeled 5-methyltetrahydrofolate, 5-formyltetrahydrofolate, and methotrexate, but not by pteroylglutamic acid. Prior incubation with 5-formyltetrahydrofolate increased uptake of [14C]5-methyltetrahydrofolate, and extracellular 5-formyltetrahydrofolate enhanced efflux of [14C]5-methyltetrahydrofolate. Nearly total depletion of ATP increased uptake of [14C]5-methyltetrahydrofolate, but efflux was unchanged. Column chromatography of membrane-free hemolysate after incubation with [14C]5-methyltetrahydrofolate showed 95% of radioactivity corresponded to marker radioisotope, and no other peak was noted.

Authors

Richard F. Branda, Bruce K. Anthony, Harry S. Jacob

×

Download this citation for these citation managers:

Or, download this citation in these formats:

If you experience problems using these citation formats, send us feedback.

Advertisement