Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI109015

The mechanisms of and the interrelationship between bile acid and chylomicron-mediated regulation of hepatic cholesterol synthesis in the liver of the rat.

F O Nervi and J M Dietschy

Find articles by Nervi, F. in: PubMed | Google Scholar

Find articles by Dietschy, J. in: PubMed | Google Scholar

Published April 1, 1978 - More info

Published in Volume 61, Issue 4 on April 1, 1978
J Clin Invest. 1978;61(4):895–909. https://doi.org/10.1172/JCI109015.
© 1978 The American Society for Clinical Investigation
Published April 1, 1978 - Version history
View PDF
Abstract

Hepatic cholesterol synthesis is controlled by both the size of the bile acid pool in the enterohepatic circulation and by the amount of cholesterol reaching the liver carried in chylomicron remnants. These studies were undertaken to examine how these two control mechanisms are interrelated. When the size of the pool was systematically varied, the logarithm of the rate of hepatic cholesterol synthesis varied in an inverse linear fashion with the size of the taurocholate pool between the limits of 0 and 60 mg of bile acid per 100 g of body weight. The slope of this relationship gave the fractional inhibition of cholesterol synthesis associated with expansion of the taurocholate pool and was critically dependent upon the amount of cholesterol available for absorption from the gastrointestinal tract. Furthermore, the degree of inhibition of cholesterol synthesis in the liver seen with taurocholate feeding was reduced by partially blocking cholesterol absorption with beta-sitosterol even though the bile acid pool was still markedly expanded. In rats with diversion of the intestinal lymph from the blood, a five-fold expansion of the taurocholate pool resulted in only slight suppression of the rate of hepatic cholesterol synthesis, and even this inhibition was shown to be attributable to small amounts of cholesterol absorbed through collateral lymphatic vessels and (or) to a fasting effect. Similarly, the infusion of either taurocholate or a combination of taurocholate and taurochenate into rats with no biliary or dietary cholesterol available for absorption caused no suppression of hepatic cholesterol synthesis. Finally, the effect of changes in the rate of bile acid snythesis on hepatic cholesterol synthesis was examined. The fractional inhibition of cholesterol synthesis found after administration of an amount of cholesterol sufficient to raise the hepatic cholesterol ester content by 1 mg/g equalled only --0.36 when bile acid snythesis was increased by biliary diversion but was --0.92 when bile acid synthesis was suppressed by bile acid feeding. It is concluded that (a) bile acids are not direct effectors of the rate of hepatic cholesterol synthesis, (b) most of the inhibitory activity seen with bile acid feeding is mediated through increased cholesterol absorption, and (c) bile acids do have an intrahepatic effect in that they regulate hepatic cholesterol synthesis indirectly by altering the flow of cellular cholesterol to bile acids.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 895
page 895
icon of scanned page 896
page 896
icon of scanned page 897
page 897
icon of scanned page 898
page 898
icon of scanned page 899
page 899
icon of scanned page 900
page 900
icon of scanned page 901
page 901
icon of scanned page 902
page 902
icon of scanned page 903
page 903
icon of scanned page 904
page 904
icon of scanned page 905
page 905
icon of scanned page 906
page 906
icon of scanned page 907
page 907
icon of scanned page 908
page 908
icon of scanned page 909
page 909
Version history
  • Version 1 (April 1, 1978): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts