Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Urea secretion by the straight segment of the proximal tubule.
S Kawamura, J P Kokko
S Kawamura, J P Kokko
Published September 1, 1976
Citation Information: J Clin Invest. 1976;58(3):604-612. https://doi.org/10.1172/JCI108507.
View: Text | PDF
Research Article

Urea secretion by the straight segment of the proximal tubule.

  • Text
  • PDF
Abstract

Studies utilizing in vitro microperfusion were designed to examine whether urea is actively or passively transported across superficial and juxtamedullary straight segments of rabbit proximal tubules. With perfusate and bath solutions containing 1 mM urea and electrolytes similar to normal plasma, the efflux (lumen-to-bath) isotopic permeability (X 10(-5) cm s-1) of superficial segments was 1.37 +/- 0.16 and of juxtamedullary segments was 2.14 +/- 0.20. In the same tubules, the influx (bath-to-lumen) isotopic permeability was 3.70 +/- 0.35 in superficial segments and 4.75 +/- 0.37 in juxtamedullary segments. Despite net water movement in the opposite direction (0.5 nl mm-1 min-1), the influx rate was significantly higher than the efflux rate of urea in both groups. With a low perfusion rate (2 nl/min) and equivalent specific activities of [14C]urea in bath and perfusate, the collected-to-perfused ratio of [14C]urea, corrected for volume marker change, was 1.07 +/- 0.01 in superficial and 1.09 +/- 0.01 in juxtamedullary nephrons, thus indicating net secretion in both segments. In separate studies urea influx was inhibited by hypothermia (decrease from 37 degrees to 28 degrees C), by phloretin (0.1 mM in bath), by cyanide (1 mM), but not by probenecid (0.2 mM). In each case the inhibition was highly significant and reversible. These data suggest that urea is actively secreted by the straight segments of both the superficial and juxtamedullary proximal tubules. These segments may, therefore, contribute significantly to the high urea concentration found at the bend of Henle's loop by micropuncture.

Authors

S Kawamura, J P Kokko

×

Full Text PDF

Download PDF (1.25 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts