Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

The relationship of structure and function in human Hageman factor. The association of enzymatic and binding activities with separate regions of the molecule.
S D Revak, C G Cochrane
S D Revak, C G Cochrane
Published April 1, 1976
Citation Information: J Clin Invest. 1976;57(4):852-860. https://doi.org/10.1172/JCI108361.
View: Text | PDF
Research Article

The relationship of structure and function in human Hageman factor. The association of enzymatic and binding activities with separate regions of the molecule.

  • Text
  • PDF
Abstract

Three regions of the human Hageman factor molecule termed the c, d, and e regions have been defined. Division of the molecule into these three regions is based on the analysis of fragments obtained by enzymatic cleavage during fluid-phase activation. The three regions have the following properties: (a) the c region has a mol wt of 40,000, has the capacity to bind to negatively charged surfaces, and does not have detectable enzymatic activity; (b) the e region possess a mol wt of 28,000 has enzymatic activity, and does not bind to negatively charged surfaces; (c) the d region has a mol wt of 12,000, is located between the c and e fragments but has not been detected as a freely existing polypeptide, and can bind firmly to negatively charged surfaces. The preparation of antibodies specific for the c and e regions is described as well as their use in defining the electrophoretic characteristics of the cde, cd, de, c, and e polypeptide fragments of Hageman factor. Evidence is given showing that the e region, but not the c or d, is released from a negatively charged surface when bound Hageman factor is exposed to proteolytic enzymes or whole plasma and that when this occurs in the presence of normal plasma, the e fragment becomes bound to C1 esterase inhibitor.

Authors

S D Revak, C G Cochrane

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts