Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

The effect of inhibition of prostaglandin synthesis on urinary sodium excretion in the conscious dog.
M A Kirschenbaum, J H Stein
M A Kirschenbaum, J H Stein
Published February 1, 1976
Citation Information: J Clin Invest. 1976;57(2):517-521. https://doi.org/10.1172/JCI108304.
View: Text | PDF
Research Article

The effect of inhibition of prostaglandin synthesis on urinary sodium excretion in the conscious dog.

  • Text
  • PDF
Abstract

Studies were performed to determine the effect of decreased endogenous release of renal prostaglandins on urinary sodium excretion. Two structurally dissimilar inhibitors of prostaglandin synthesis were employed, and studies were performed in conscious dogs allowed to recover from prior surgical instrumentation. Either meclofenamate (2 mg/kg) or the competitive prostaglandin inhibitor RO 20-5720 (1 mg/kg) was given to seven unanesthetized dogs undergoing a water diuresis. The administration of either prostaglandin inhibitor did not alter glomerular filtration rate, renal plasma flow, urinary volume, or potassium excretion. Sodium excretion, however, increased from 32 to 130 mueq/min (P less than 0.02). Essentially, the entire increase in sodium excretion was due to an increase in urinary sodium concentration from 7.7 to 28.3 meq/liter (P less than 0.02). On a different day, the same animals were studied before and after administration of the diluent of the prostaglandin inhibitor. No change was noted in sodium excretion or any other parameter. Thus, these findings suggest that prostaglandin inhibition in the conscious dog is associated with a natriuresis without a change in urinary volume or potassium excretion during water diuresis. This may indicate that the natruiresis was due to diminished sodium reabsorption beyond the distal tubule.

Authors

M A Kirschenbaum, J H Stein

×

Usage data is cumulative from September 2024 through September 2025.

Usage JCI PMC
Text version 95 4
PDF 30 3
Scanned page 108 0
Citation downloads 40 0
Totals 273 7
Total Views 280
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts