Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

The metabolism of 3alpha, 7alpha, 12alpha-trihydorxy-5beta-cholestan-26-oic acid in two siblings with cholestasis due to intrahepatic bile duct anomalies. An apparent inborn error of cholic acid synthesis.
R F Hanson, … , P D Klein, H L Sharp
R F Hanson, … , P D Klein, H L Sharp
Published September 1, 1975
Citation Information: J Clin Invest. 1975;56(3):577-587. https://doi.org/10.1172/JCI108127.
View: Text | PDF
Research Article

The metabolism of 3alpha, 7alpha, 12alpha-trihydorxy-5beta-cholestan-26-oic acid in two siblings with cholestasis due to intrahepatic bile duct anomalies. An apparent inborn error of cholic acid synthesis.

  • Text
  • PDF
Abstract

Studies were carried out in a family in which two children with cholestasis due to intrahepatic bile duct anomalies were shown to have increased amounts of the cholic acid precursor, 3alpha, 7alpha, 12alpha-trihydorxy-5beta-cholestan-26-oic acid (THCA). The metabolism of THCA was studied in one of these patients after an intravenous injection of (3H)THCA, and the cause of the increased amounts of THCA in this condition was found to be due to a metabolic defect in the conversion of this compound into cholic acid. A small amount of (3H)cholic acid was also identified after (3H)THCA administration, confirming that this metabolic defect was incomplete. Varanic acid (3alpha, 7alpha, 12alpha, 24xi-tetrahydorxy-5beta-cholestan-26-oic acid), a metabolite of THCA, could not be identified in either of these patients. By assuming that this compound would be conjugated and excreted if the metabolic block occurred after the formation of varanic acid, the defect in these patients appears to be due to a deficiency of a 24-hydroxylating enzyme system required to convert THCA into varanic acid. This condition appears to be transmitted in an autosomal recessive fashion, because the two affected patients were of opposite sex, and neither a normal sibling nor the two parents have increased amount of THCA in their bile.

Authors

R F Hanson, J N Isenberg, G C Williams, D Hachey, P Szczepanik, P D Klein, H L Sharp

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts