Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
The role of superoxide anion and hydrogen peroxide in phagocytosis-associated oxidative metabolic reactions.
R L Baehner, … , J Davis, R B Johnston Jr
R L Baehner, … , J Davis, R B Johnston Jr
Published September 1, 1975
Citation Information: J Clin Invest. 1975;56(3):571-576. https://doi.org/10.1172/JCI108126.
View: Text | PDF
Research Article

The role of superoxide anion and hydrogen peroxide in phagocytosis-associated oxidative metabolic reactions.

  • Text
  • PDF
Abstract

The contribution of hydrogen peroxide (H2O2) and one of its unstable intermediates, superoxide anion (O2), to the oxidative reactions that occur in phagocytizing leukocytes was explored by depleting these cells of O2. This was accomplished by allowing them to phagocytize latex particles coated with superoxide dismutase (SOD), which catalyzes the generation of H2O2 from O2. Although the rate and extent of phagocytosis of latex coated with bovine serum albumin was similar to latex coated with SOD, the rate of oxygen consumption, [14C]formate oxidation, [1-14C]glucose oxidation, and iodination of zymosan particles was significantly enhanced by SOD. In contrast, the rate and extent of reduction of nitroblue tetrazolium (NBT) was diminished by 60%. These studies indicate that the majority of NBT reduction by leukocytes is due to O2, whereas stimulation of the hexose monophosphate shunt and iodination of ingested particles requires H2O2 generated from the increased reduction of oxygen by phagocytizing leukocytes.

Authors

R L Baehner, S K Murrmann, J Davis, R B Johnston Jr

×

Full Text PDF | Download (952.22 KB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts