Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI108085

Human bone marrow lymphocytes. I. Distribution of lymphocyte subpopulations in the bone marrow of normal individuals.

A S Fauci

Find articles by Fauci, A. in: JCI | PubMed | Google Scholar

Published July 1, 1975 - More info

Published in Volume 56, Issue 1 on July 1, 1975
J Clin Invest. 1975;56(1):98–110. https://doi.org/10.1172/JCI108085.
© 1975 The American Society for Clinical Investigation
Published July 1, 1975 - Version history
View PDF
Abstract

This study was undertaken to determine the proportions and in vitro immune capacities of lymphocyte populations in the bone marrows of normal humans. Relatively pure mononuclear cell suspensions were obtained from bone marrow aspirates by linear sucrose gradient centrifugations. Simultaneous peripheral blood and bone marrow specimens from each individual were assayed for lymphocyte surface markers and mitogen responsiveness. Maximal possible contamination of bone marrow aspirates by peripheral blood was determined by performing aspirates on individuals who had received 51chromium-labeled autologous erythrocytes. Rhymus-derived (T) lymphocytes, as determined by the sheep red blood cell (E) rosette assay, comprised 8.6-(plus or minus 1.6)% of the total bone marrow lymphocyte pool. Bone marrow-derived (B) lymphocytes, as determined by the presence of a complement receptor, made up 15.4-(plus or minus 1.9)% of the lymphocyte pool whereas 74.6 (plus or minus 2.4)% of mononuclear cells lacked easily detectable surface markers. These findings could not be explained by contamination with peripheral blood lymphocytes since contamination was corrected for in the calculations. Lymphocyte-enriched suspensions of bone marrow cells responded to stimulation with phytohemagglutinin, concanalin A, and particularly pokeweed mitogen. In vitro incubations of bone marrow and peripheral blood lymphocytes with tritiated thymidine followed by determinations of E and erythrocyte antibody complement (EAC) rosettes were performed. Simultaneous rosetteradioautographs demonstrated that the proliferative potential of bone marrow B lymphocytes was greater than peripheral blood B lymphocytes (P less than 0.01). On the other hand, the proliferative potential of bone marrow T lymphocytes was the same as that of peripheral blood T lymphocytes. These findings demonstrate that in addition to containing B lymphocytes the normal bone marrow contains a small fraction of T lymphocytes similar to the mature T lymphocyte pool found in the peripheral blood. These T cells most probably enter the bone marrow parenchyma as part of the normal recirculating lymphocyte pool.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 98
page 98
icon of scanned page 99
page 99
icon of scanned page 100
page 100
icon of scanned page 101
page 101
icon of scanned page 102
page 102
icon of scanned page 103
page 103
icon of scanned page 104
page 104
icon of scanned page 105
page 105
icon of scanned page 106
page 106
icon of scanned page 107
page 107
icon of scanned page 108
page 108
icon of scanned page 109
page 109
icon of scanned page 110
page 110
Version history
  • Version 1 (July 1, 1975): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts