Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Studies on human thyroxine-binding globulin (TBG). IX. Some physical, chemical, and biological properties of radioiodinated TBG and partially desialylated TBG.
S Refetoff, … , V S Fang, J S Marshall
S Refetoff, … , V S Fang, J S Marshall
Published July 1, 1975
Citation Information: J Clin Invest. 1975;56(1):177-187. https://doi.org/10.1172/JCI108066.
View: Text | PDF
Research Article

Studies on human thyroxine-binding globulin (TBG). IX. Some physical, chemical, and biological properties of radioiodinated TBG and partially desialylated TBG.

  • Text
  • PDF
Abstract

Thyroxine-binding globulin (TBG) and partially desialylated or slow TBG (STBG) were purified from human serum by affinity chromatography. Purified TBG was identical to TBG present in serum by the criteria of electrophoretic mobility, affinity for thyroxine (T4), and heat-inactivation response. Purified STBG had slower electrophoretic mobility and lower affinity for T4. Both bound T4 in an equimolar ratio, were immunoprecipitable, and had similar inactivation t1/2 at 61 degrees C. TBG and STBG were iodinated by the chloramine-T-catalyzed reaction. An average of from 0.02 to 6 atoms I could be incorporated per molecule of the protein by adjusting the conditions of the reaction (time, protein and iodide concentrations). 125-I, 131-I, and 127-I were used. Iodination increased the anodal mobility of TBG but did not affect the reversible T4-binding, precipitation by antiserum, or the heat-inactivation properties. "Heavily" and "lightly" iodinated TBG had identical disappearance half-times from serum in the rabbit. 15 min after the intravenous administration of [131-I]-STBG and [125-I]TBG mixture to rats, more than 90% of the injected 131-I dose was in the liver, and the liver 131-I/125-I ratio was 32-fold that of serum. Selective uptake of STBG by the liver was also observed in the rabbit and in man. The serum [125-I]STBG/[131-I]TBG ratio declined from 1 to 0.2 in 10 min in the intact rabbit but remained unchanged for 1 h in the acutely hepatectomized animal. In the rabbit, t 1/2 was approximately 3 min for STBG and 0.8-3.4 days for TBG. The radioiodine derived from the iodinated proteins is partly excreted in bile but the bulk was precipitable with specific antibodies. Some isotope in the form of iodide appeared in blood and was excreted in the urine. Since radioiodinated TBG and STBG preserve their biologic and immunologic properties they are useful as tracer materials for metabolic studies. In rat, rabbit, and man STBG is rapidly cleared from serum by the liver. Conversion of TBG to STBG may be the limiting step in the regulation of TBG metabolism.

Authors

S Refetoff, V S Fang, J S Marshall

×

Full Text PDF | Download (1.83 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts