Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Defective alpha-polymerization in the conversion of fibrinogen Baltimore to fibrin.
C H Brown, M F Crowe
C H Brown, M F Crowe
Published June 1, 1975
Citation Information: J Clin Invest. 1975;55(6):1190-1194. https://doi.org/10.1172/JCI108036.
View: Text | PDF
Research Article

Defective alpha-polymerization in the conversion of fibrinogen Baltimore to fibrin.

  • Text
  • PDF
Abstract

The subunit structure of fibrinogen Baltimore and fibrin formed from this inherited dysfibrinogenemia was analyzed by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. The molecular weights of the alpha-, b- and gamma-chains of fibrinogen Baltimore were found to be identical to those of normal fibrinogen. Noncross-linked fibrin formed from both purified fibrinogen Baltimore as well as normal fibrinogen contained two alpha-monomers (alpha1 and alpha2). alpha2 was presumed to be alpha-monomer from which fibrinopeptide A had been released. The evolution of alpha2 during clotting of fibrinogen Baltimore was delayed and appeared to be quantitatively reduced when compared to normal. Crosslinked fibrin formed from fibrinogen Baltimore possessed an abnormal subunit structure. alpha-polymers were not generated in thrombin-induced, factor XIII-rich clots of fibrinogen Baltimore under conditions of pH and calcium concentration suitable for complete alpha-polymerization in normal fibrin. If clotting was carried out with calcium concentrations twice that required for normal clots or at pH 6.4, fibrin from fibrinogen Baltimore was completely cross-linked. These structural analyses of fibrin formed from fibrinogen Baltimore substantiate earlier findings that indicate a defect in the alpha-chain of this dysfibrinogenemia.

Authors

C H Brown, M F Crowe

×

Full Text PDF

Download PDF (1.54 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts