Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Upcoming)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Neutrophil kinetics in the dog.
K A Deubelbeiss, … , L A Harker, C A Finch
K A Deubelbeiss, … , L A Harker, C A Finch
Published April 1, 1975
Citation Information: J Clin Invest. 1975;55(4):833-839. https://doi.org/10.1172/JCI107994.
View: Text | PDF
Research Article

Neutrophil kinetics in the dog.

  • Text
  • PDF
Abstract

The production of neutrophils in dogs has been estimated from the number of postmitotic neutrophils in the marrow and the transit time of a [3H]-thymidine pulse. The number of postmitotic neutrophils was derived from the erythron iron turnover measurement of erythroid number and the neutrophil-erythroid ratio in bone marrow sections. The mean value for marrow postmitotic neutrophils in dogs was 5.61 plus or minus 0.56 times 10-9 cells/kg. The mean transit time of these neutrophils was calculated to be 82.1 h. A marrow production of 1.65 times 10-9 neutrophils/kg/day was calculated from these data. The turnover of circulating neutrophils was measured by [3H]thymidine and [32P]diisopropylphospho-fluoridate (DF32P) labeling of blood neutrophils. [3H]-Thymidine labeling gave a calculated recovery of 65 per cent, a t1/2 disappearance time of 6.7 h, and a calculated turnover of 1.66 times 10-9 cells/kg/day. Corresponding results with DF32P tagging were 51 per cent, 5.4 h, and 2.89 times 10-9 cells/kg/day. The discrepancy between these two tags persisted in doubly tagged cells and was considered to be due to elution of DF32P.

Authors

K A Deubelbeiss, J T Dancey, L A Harker, C A Finch

×

Full Text PDF | Download (1.09 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts