Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Upcoming)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Role of the low density lipoprotein receptor in regulating the content of free and esterified cholesterol in human fibroblasts.
M S Brown, … , J R Faust, J L Goldstein
M S Brown, … , J R Faust, J L Goldstein
Published April 1, 1975
Citation Information: J Clin Invest. 1975;55(4):783-793. https://doi.org/10.1172/JCI107989.
View: Text | PDF
Research Article

Role of the low density lipoprotein receptor in regulating the content of free and esterified cholesterol in human fibroblasts.

  • Text
  • PDF
Abstract

The transfer of normal human fibroblasts from medium containing whole serum to medium devoid of lipoproteins produced a 90 percent decrease in the cellular content of cholesteryl esters and a 30 percent decrease in the free cholesterol content. When these lipoprotein-deprived cells were subsequently incubated with human low density lipoprotein (LDL), there was a 7-fold increase in the cellular content of esterified cholesterol and a 1.6-fold increase in the cellular content of free cholesterol. The concentration at which LDL produced its half-maximal effect in elevating cellular sterol content (30 mug/ml of LDL-cholesterol) was similar to the half-maximal concentration previously reported for high affinity binding of LDL to its cell surface receptor. High density lipoprotein (HDL) and whole serum from a patient with abetalipoproteinemia (neither of which contains a component that binds to the LDL receptor) did not produce a significant increase in the content of either cholesterol or cholesteryl esters in normal cells. Furthermore, in fibroblasts from patients with the homozygous form of familial hypercholesterolemia, which lack functional LDL receptors, LDL had no effect in raising the cellular content of either free or esterified cholesterol even when present in the medium at concentrations as high as 450 mug sterol/ml. It is concluded that LDL-receptor interactions constitute an important biochemical mechanism for the regulation of the cholesterol content of normal human fibroblasts. Moreover, when considered in light of current concepts of LDL metabolism in intact mammals, the present data suggest that a major function of plasma LDL may be to transport cholesterol from its site of synthesis in liver and intestine to its site of uptake in peripheral tissues.

Authors

M S Brown, J R Faust, J L Goldstein

×

Full Text PDF | Download (1.72 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts