Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Urinary prostaglandins. Identification and origin.
J C Frölich, … , J T Watson, J A Oates
J C Frölich, … , J T Watson, J A Oates
Published April 1, 1975
Citation Information: J Clin Invest. 1975;55(4):763-770. https://doi.org/10.1172/JCI107987.
View: Text | PDF
Research Article

Urinary prostaglandins. Identification and origin.

  • Text
  • PDF
Abstract

Human urine was analyzed by mass spectrometry for the presence of prostaglandins. Prostaglandin E2 and F2alpha were detected in urine from females by selected ion monitoring of the prostaglandin E2-methylester-methoxime bis-acetate and the prostaglandin F2alpha-methyl ester-Tris-trimethylsilylether derivative. Additional evidence for the presence of prostaglandin F2alpha was obtained by isolating from female urine an amount of this prostaglandin sufficient to yield a complete mass spectrum. The methods utilized permitted quantitative analysis. The origin of urinary prostaglandin was determined by stimulating renal prostaglandin synthesis by arachidonic acid or angiotensin infusion. Arachidonic acid, the precursor of prostaglandin E2, when infused into one renal artery of a dog led to a significant increase in the excretion rate of this prostaglandin. Similarly, infusion of angiotensin II amide led to a significantly increased ipsilateral excretion rate of prostaglandin E2 and F2a in spite of a simultaneous decrease in the creatinine clearance. In man, i.v. infusion of angiotensin also led to an increased urinary eliminiation of prostaglandin E. These results show that urinary prostaglandins may originate from the kidney, indicating that renally synthesized prostaglandins diffuse or are excreted into the tubule. Thus, urinary prostaglandins are a reflection of renal prostaglandin synthesis and have potential as a tool to delineate renal prostaglandin physiology and pathology.

Authors

J C Frölich, T W Wilson, B J Sweetman, M Smigel, A S Nies, K Carr, J T Watson, J A Oates

×

Full Text PDF | Download (1.13 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts