Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Uptake of materials by the intact liver. The exchange of glucose across the cell membranes.
C A Goresky, B E Nadeau
C A Goresky, B E Nadeau
View: Text | PDF
Research Article

Uptake of materials by the intact liver. The exchange of glucose across the cell membranes.

  • Text
  • PDF
Abstract

D-Glucose equilibrates within liver cells. We have studied its process of entry into and exit from these cells with the multiple indicator dilution technique. Labeled red cells (a vascular indicator), labeled sucrose (an extracellular reference), and labeled D-glucose were rapidly injected into the portal vein, and from serially sampled hepatic venous blood, normalized outflow-time patterns were obtained. The labeled red cell curve rises to an early high peak, and decays rapidly; and that for sucrose reaches a later and lower peak and decays less rapidly, but generates an equivalent area. The curve for labeled D-glucose begins with that for labeled sucrose, gradually rises to a peak which is later and substantially lower than that for sucrose, and then decreases slowly. At high glucose levels this curve assumes a squared-off shape, rises fairly quickly to its highest level, at the time of the sucrose peak, and then slowly decreases. Phlorizin and galactose infusion result in the emergence of a pronounced early peak, under the sucrose peak; and the curve for tracer L-glucose approaches that for sucrose. We resolve from the D-glucose curves, by model analysis, two components: throughout material, which has not entered the cells; and exchanging material, which has entered and later returned to the circulation. The analysis provides estimates of the kinetic entrance and exist coefficients; and from these, saturation of both the entrance and exit processes was evident. The characteristic transport parameters were determined. For both entrance and exit, a common Km, 2,170 mg/100 ml, and transport maximum, 5.13 mg s-1 (ml intracellular fluid)-1, were found. Both these values are exceedingly large. Several other phenomena were defined which additionally characterize the transport process: phlorizin and galacose produced competitive inhibition; the transport process was found to be relatively stereospecific; and sudden infusion of hypertonic glucose produced counter-transport of labeled D-glucose.

Authors

C A Goresky, B E Nadeau

×

Usage data is cumulative from December 2024 through December 2025.

Usage JCI PMC
Text version 202 5
PDF 56 8
Figure 0 2
Scanned page 402 4
Citation downloads 62 0
Totals 722 19
Total Views 741
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts