Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI107484

Immune Enhancement of Pulmonary Bactericidal Activity in Murine Virus Pneumonia

George J. Jakab and Gareth M. Green

1Pulmonary Unit, Department of Medicine, and the Specialized Center of Research in Pulmonary Diseases (SCOR), University of Vermont College of Medicine, Burlington, Vermont 05401

Find articles by Jakab, G. in: PubMed | Google Scholar

1Pulmonary Unit, Department of Medicine, and the Specialized Center of Research in Pulmonary Diseases (SCOR), University of Vermont College of Medicine, Burlington, Vermont 05401

Find articles by Green, G. in: PubMed | Google Scholar

Published November 1, 1973 - More info

Published in Volume 52, Issue 11 on November 1, 1973
J Clin Invest. 1973;52(11):2878–2884. https://doi.org/10.1172/JCI107484.
© 1973 The American Society for Clinical Investigation
Published November 1, 1973 - Version history
View PDF
Abstract

Bacterial multiplication in the lung associated with murine Sendai virus pneumonia is caused by virus-induced defects in pulmonary bactericidal mechanisms. The nature of this effect has been studied in animals immunized against the challenge bacteria. Mice were immunized against Proteus mirabilis by intraperitoneal inoculation and by aerosol inhalation. After the development of immunity, mice were infected aerogenically with 104 TCID50 of Sendai virus. 7 days later, during the height of the bronchial inflammation and pulmonary consolidation, the mice were challenged with an aerosol of viable 35S-labeled Proteus mirabilis or 32P-labeled Staphylococcus aureus.

Nonimmunized virus-infected animals showed marked impairment of pulmonary bactericidal activity with subsequent multiplication of the bacterial strain in the case of Proteus mirabilis. Immunized nonvirus-infected animals showed enhancement of pulmonary bactericidal activity for the homologous and heterologous strains in comparison with nonimmunized animals. Virus-infected animals immunized by aerosol showed enhanced bactericidal activity against the homologous but not the heterologous bacterial strain. Neither virus infection nor immunization had a significant effect on the transport of particles in the lung. The data demonstrated that the bacterial multiplication associated with the virus pneumonia was prevented by preceding immunization against the homologous challenge organism. The data suggest a mechanism for controlling bacterial multiplication associated with virus pneumonias.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 2878
page 2878
icon of scanned page 2879
page 2879
icon of scanned page 2880
page 2880
icon of scanned page 2881
page 2881
icon of scanned page 2882
page 2882
icon of scanned page 2883
page 2883
icon of scanned page 2884
page 2884
Version history
  • Version 1 (November 1, 1973): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts