We investigated the contributions of intrinsic disease of the airways, loss of lung recoil and enhanced airway collapsibility to the airflow obstruction of 17 patients with chronic bronchitis and emphysema. Airways conductance at low flow (Gaw), maximum expiratory flow (V̇E, MAX) and static lung recoil pressure [Pst (l)] were measured at different lung volumes, and conductance-static recoil pressure and maximum flow-static recoil pressure curves constructed. Low values of ΔGaw/ΔPst (l) and ΔV̇E, max/ΔPst (l) were attributed to intrinsic airways disease. Airway collapsibility was assessed by comparing Gaw with upstream conductance on forced expiration and by the intercept of the maximum flow-static recoil curve on the static recoil pressure axis (Ptm′).
D. G. Leaver, A. E. Tattersfield, N. B. Pride
Usage data is cumulative from September 2024 through September 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 95 | 12 |
30 | 10 | |
Scanned page | 225 | 3 |
Citation downloads | 32 | 0 |
Totals | 382 | 25 |
Total Views | 407 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.