Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Effects of Glutamine Deamination on Glutamine Deamidation in Rat Kidney Slices
Harry G. Preuss, … , Olympia Vivatsi-Manos, Leonard L. Vertuno
Harry G. Preuss, … , Olympia Vivatsi-Manos, Leonard L. Vertuno
Published April 1, 1973
Citation Information: J Clin Invest. 1973;52(4):755-764. https://doi.org/10.1172/JCI107238.
View: Text | PDF
Research Article

Effects of Glutamine Deamination on Glutamine Deamidation in Rat Kidney Slices

  • Text
  • PDF
Abstract

Glutamate is known to inhibit the activity of isolated glutaminase I; however, its actual physiologic importance in regulating renal ammoniagenesis has not been established. To determine the regulatory role of glutamate on the metabolism of glutamine by rat kidney slices, we followed the effects on glutamine (2 mM) deamidation of increased removal of glutamate via augmented deamination. Three agents (malonate, 2,4-dinitrophenol, and methylene blue) were known to and shown here to hasten exogenous glutamate deamination. In slices from 10 control rats, 21.5±1.7 (SEM) μmol/g of ammonia were formed from amide nitrogen and 9.3±0.5 (SEM) μmol/g from the amino nitrogen of glutamine in vitro. Over 90% of the glutamine deamidated formed glutamate at one point in its catabolism. After addition of malonate (10 mM), 2,4-dinitrophenol (0.1 mM), or methylene blue (0.5 mM), the production of ammonia from the amino group rose to 29.3±6.0 (SEM) μmol/g, 20.0±1.8 (SEM) μmol/g, and 15.5±4.2 (SEM) μmol/g, respectively; ammonia production from the amide nitrogen rose also, 45.1±7.3 (SEM) μmol/g, 39.7±2.6 (SEM) μmol/g, and 41.9±3.7 (SEM) μmol/g. In the case of the former two, a minimum of 99% and 75% of the glutamine catabolized formed glutamate. Despite increased glutamine catabolism, there was no build up of glutamate in the media. A correlation between the formation of ammonia from the amino and amide nitrogen was apparent. Since none of the three agents selected affected phosphate activated glutaminase I activity directly or appeared to affect glutamine transport, we interpret the increase in deamidation as an expression of deinhibition of glutaminase I activity secondary to lowered glutamate concentrations at the deamidating sites through more rapid removal of glutamate via hastened deamination. Interestingly, slices removed from acidotic rats produced more ammonia from both the amino 29.1±3.8 (SEM) and amide nitrogens 45.9±4.3 (SEM) of glutamine, without a buildup of glutamate in the medium. At least 90% of the glutamine deamidated formed glutamate. A common mechanism is proposed to explain these results and the previous ones.

Authors

Harry G. Preuss, Olympia Vivatsi-Manos, Leonard L. Vertuno

×

Full Text PDF

Download PDF (1.47 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts