Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Mechanism of Effect of Prostaglandin E1 on Renal Water Excretion
T. Berl, R. W. Schrier
T. Berl, R. W. Schrier
Published February 1, 1973
Citation Information: J Clin Invest. 1973;52(2):463-471. https://doi.org/10.1172/JCI107203.
View: Text | PDF
Research Article

Mechanism of Effect of Prostaglandin E1 on Renal Water Excretion

  • Text
  • PDF
Abstract

The present study examined the effect of prostaglandin E1 (PGE1) on renal water excretion in the anesthetized dog. Renal perfusion pressure was kept constant by adjustment of a suprarenal aortic clamp. In seven experiments the intravenous administration of PGE1 (7 μg/min) significantly increased urinary osmolality from 76 to 381 mosmol (P < 0.001) and decreased free water clearance from 2.2 to - 0.02 ml/min (P < 0.001). These effects promptly were reversed with cessation of the infusion. This antidiuretic effect occurred both in innervated and denervated kidneys and was not associated with changes in glomerular filtration rate, renal vascular resistance, or solute excretion rate. In 10 experiments in hypophysectomized dogs no effect of intravenous PGE1 on free water clearance and urinary osmolality was observed. The intrarenal administration of PGE1 (1 μg/min) to six water-loaded and two hypophysectomized dogs caused no systemic vascular changes and increased rather than decreased free water clearance (2.83 to 4.08 ml/min, P < 0.001). No significant change in urinary osmolality occurred. Glomerular filtration rate was not altered by the intrarenal infusion, but reversible changes in solute excretion rate and renal vascular resistance occurred. These results thus indicate that the antidiuresis associated with intravenous PGE1 is mediated primarily by the release of vasopressin rather than alterations in renal hemodynamics or solute excretion. The diuretic effect of intrarenal PGE1 occurs in the absence of vasopressin and is most likely mediated primarily by increased distal delivery of tubular fluid to the diluting segment of the nephron rather than changes in water permeability of the renal tubular epithelium.

Authors

T. Berl, R. W. Schrier

×

Full Text PDF

Download PDF (1.30 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts