Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI106980

An invertebrate coagulation system activated by endotoxin: evidence for enzymatic mediation

Neal S. Young, Jack Levin, and Robert A. Prendergast

Department of Medicine and The Wilmer Institute, The Johns Hopkins University School of Medicine and Hospital, Baltimore, Maryland 21205

Marine Biological Laboratory, Woods Hole, Massachusetts 02543

Find articles by Young, N. in: PubMed | Google Scholar

Department of Medicine and The Wilmer Institute, The Johns Hopkins University School of Medicine and Hospital, Baltimore, Maryland 21205

Marine Biological Laboratory, Woods Hole, Massachusetts 02543

Find articles by Levin, J. in: PubMed | Google Scholar

Department of Medicine and The Wilmer Institute, The Johns Hopkins University School of Medicine and Hospital, Baltimore, Maryland 21205

Marine Biological Laboratory, Woods Hole, Massachusetts 02543

Find articles by Prendergast, R. in: PubMed | Google Scholar

Published July 1, 1972 - More info

Published in Volume 51, Issue 7 on July 1, 1972
J Clin Invest. 1972;51(7):1790–1797. https://doi.org/10.1172/JCI106980.
© 1972 The American Society for Clinical Investigation
Published July 1, 1972 - Version history
View PDF
Abstract

Lysates prepared from the amebocytes of Limulus polyphemus, the horseshoe crab, are gelled by endotoxin. Studies were carried out to characterize the components of amebocyte lysate and to examine the kinetics of their reaction with endotoxin. Analysis of amebocyte lysate using sucrose density gradients showed two peaks at 46% and 86% gradient volumes. G50 and G75 Sephadex column chromatography resulted in three protein peaks. One fraction contained a clottable protein, which had a molecular weight of approximately 27,000, and was heat stable. Another fraction contained a high molecular weight, heat labile material, which was activated by endotoxin and reacted with the clottable protein to form a gel. The rate of the reaction between endotoxin and amebocyte lysate was dependent upon the concentration of endotoxin and the concentration of the fraction containing the high molecular weight material. The activity of this fraction was inhibited by diisopropyl fluorophosphate, parachloromercuribenzoate, and para-chloromercuriphenyl sulfonate, suggesting that enzymatic activity depended upon serine hydroxyl and sulfhydryl groups. The reaction between endotoxin and the fractions of lysate was temperature and pH dependent. The data suggest that endotoxin activates an enzyme which then gels the clottable protein contained in amebocyte lysate.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1790
page 1790
icon of scanned page 1791
page 1791
icon of scanned page 1792
page 1792
icon of scanned page 1793
page 1793
icon of scanned page 1794
page 1794
icon of scanned page 1795
page 1795
icon of scanned page 1796
page 1796
icon of scanned page 1797
page 1797
Version history
  • Version 1 (July 1, 1972): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts