Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
The mechanism of folate transport in rabbit reticulocytes
William F. Bobzien III, David Goldman
William F. Bobzien III, David Goldman
Published July 1, 1972
Citation Information: J Clin Invest. 1972;51(7):1688-1696. https://doi.org/10.1172/JCI106970.
View: Text | PDF
Research Article

The mechanism of folate transport in rabbit reticulocytes

  • Text
  • PDF
Abstract

Folate transport in phenylhydrazine-induced rabbit reticulocytes was studied with the non-metabolized folate-analog, methotrexate. The time-course of methotrexate uptake into a mixed population of reticulocytes and mature erythrocytes is a two-component process consisting of a small, but rapid, initial uptake phase followed by a much slower uptake component which remains essentially constant over the period of observation. The velocity of the latter uptake component is directly proportional to the per cent reticulocytes and appears to represent a unidirectional influx of methotrexate into these cells. Uptake of methotrexate into reticulocytes was found to have the following characteristics: (a) temperature sensitivity, Q10 of 4; (b) uptake velocity as a function of the extracellular methotrexate concentration approximated Michaelis-Menten kinetics with a maximum transport velocity of 48 pmoles/min per g dry wt; the extracellular methotrexate level at which the uptake velocity was one-half maximum was 1.4 μM; (c) 5-formyltetrahydrofolate markedly inhibited methotrexate uptake but pteroylglutamic acid inhibition was weak; (d) uptake was stimulated in cells preincubated with 5-formyltetrahydrofolate, indicative of hetero-exchange diffusion; (e) uptake was independent of extracellular sodium but was inhibited by anions including nitrate, phosphate, and glucose-6-phosphate; (f) uptake was enhanced by azide plus iodoacetate.

Authors

William F. Bobzien III, David Goldman

×

Full Text PDF

Download PDF (1.43 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts