Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
The Role of Intraluminal Sodium in Glucose Absorption In Vivo
David A. Saltzman, … , Floyd C. Rector Jr., John S. Fordtran
David A. Saltzman, … , Floyd C. Rector Jr., John S. Fordtran
Published April 1, 1972
Citation Information: J Clin Invest. 1972;51(4):876-885. https://doi.org/10.1172/JCI106882.
View: Text | PDF
Research Article

The Role of Intraluminal Sodium in Glucose Absorption In Vivo

  • Text
  • PDF
Abstract

Active glucose absorption is thought to depend on a gradient of sodium ion concentration across the brush border membrane of intestinal epithelial cells. This concept is generally accepted, although its validity has never been adequately evaluated in the human small intestine in vivo. According to this hypothesis, the rate of glucose absorption should decrease markedly if the luminal sodium concentration is markedly reduced, and glucose absorption against a concentration gradient should cease entirely if luminal sodium is lower than intracellular sodium concentration. In the present series of experiments we were not able to show an important role of intraluminal sodium concentration in the active absorption of glucose from the human, rat, and dog ileum in vivo. Specifically, glucose absorption was minimally reduced or not reduced at all when intraluminal sodium concentration was reduced from 140 to as low as 2.5 mEq/liter. The discrepancy between our results and those of previous workers whose data suggest that removal of intraluminal sodium should markedly inhibit active glucose absorption is not entirely clear, but there are a number of differences in experimental design between most previous studies and our own. Although our data show that active glucose absorption proceeds at a near normal rate even when lumen sodium concentration is reduced below 3 mEq/liter, our results do not disprove the sodium gradient theory because of the theoretic possibility that the microclimate adjacent to the brush border has a high concentration of sodium even when luminal sodium concentration is markedly reduced. The validity of the sodium gradient hypothesis would appear to be critically dependent on such a microclimate.

Authors

David A. Saltzman, Floyd C. Rector Jr., John S. Fordtran

×

Full Text PDF | Download (1.53 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts