Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Succinyl-CoA: 3-Ketoacid CoA-Transferase Deficiency. A CAUSE FOR KETOACIDOSIS IN INFANCY
J. Tyson Tildon, Marvin Cornblath
J. Tyson Tildon, Marvin Cornblath
Published March 1, 1972
Citation Information: J Clin Invest. 1972;51(3):493-498. https://doi.org/10.1172/JCI106837.
View: Text | PDF
Research Article

Succinyl-CoA: 3-Ketoacid CoA-Transferase Deficiency. A CAUSE FOR KETOACIDOSIS IN INFANCY

  • Text
  • PDF
Abstract

To explain the cause of a unique form of severe and intermittent ketoacidosis in an infant who expired after 6 months of life, tissue culture fibroblasts and post mortem tissue were examined for enzyme activities that catalyze glucose and ketoacid oxidation. No measurable succinyl-CoA: 3-ketoacid CoA-transferase (CoA-transferase) activity could be detected in homogenates of the post mortem brain, muscle and kidney tissue, or in the cultured skin fibroblasts. Since seven other enzyme activities involving both glycolysis and ketone body oxidation were present in these same tissues, it was reasonable to conclude that the observed absence of CoA-transferase activity was not an artifact of homogenate preparation. It was concluded that the absence of CoA-transferase activity resulted in a loss of intracellular homeostasis leading to ketoacidosis. In addition, the absence of this enzyme appears to be a reasonable explanation for the alteration in glucose metabolism that was previously reported in fibroblasts from this patient.

Authors

J. Tyson Tildon, Marvin Cornblath

×

Full Text PDF

Download PDF (1.01 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts