Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Biochemical and genetic studies in cystinuria: observations on double heterozygotes of genotype I/II
Claude L. Morin, … , Sanford H. Jackson, Andrew Sass-Kortsak
Claude L. Morin, … , Sanford H. Jackson, Andrew Sass-Kortsak
Published September 1, 1971
Citation Information: J Clin Invest. 1971;50(9):1961-1976. https://doi.org/10.1172/JCI106688.
View: Text | PDF
Research Article

Biochemical and genetic studies in cystinuria: observations on double heterozygotes of genotype I/II

  • Text
  • PDF
Abstract

10 families with cystinuria were investigated by measuring: (a) quantitative 24 hr urinary excretion of amino acids by column chromatography; (b) endogenous renal clearances of amino acids and creatinine; (c) intestinal uptake of 34C-labeled L-cystine, L-lysine, and L-arginine using jejunal mucosal biopsies; (d) oral cystine loading tests. All four of these were studied in the probands and the first two in a large number of the family members.

Authors

Claude L. Morin, Margaret W. Thompson, Sanford H. Jackson, Andrew Sass-Kortsak

×

Full Text PDF | Download (2.48 MB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts