Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Abnormal membrane protein of red blood cells in hereditary spherocytosis
H. S. Jacob, … , E. S. Overland, D. Mazia
H. S. Jacob, … , E. S. Overland, D. Mazia
Published September 1, 1971
Citation Information: J Clin Invest. 1971;50(9):1800-1805. https://doi.org/10.1172/JCI106670.
View: Text | PDF
Research Article

Abnormal membrane protein of red blood cells in hereditary spherocytosis

  • Text
  • PDF
Abstract

We present evidence that the hereditable hemolytic disease, hereditary spherocytosis (HS), involves an abnormality in protein of the red cell membrane. Unlike that from normal red cells, lipid-free proteins extracted from HS red cell membranes fail to increase in sedimentation rate when treated with cations; such treatment of normal membrane proteins has been shown by others to cause the formation of microfilaments. That microfilament formation might be defective in HS red cell membranes is supported by observations with vinblastine. This compound, a potent precipitant of filamentous, structure proteins throughout phylogeny, precipitates significantly less HS membrane protein than normal. The resistance of HS membrane protein to changes in conformation by cations is observable at the cellular level as well. That is, both normal and HS red cells agglutinate after repeated washing and suspension in electrolyte-free media. Tiny concentrations of Ca++ (5 × 10-5 M) changes the surfaces of normal cells in such a way as to cause disagglutination; HS red cells resist this change and remain agglutinated unless Ca++ concentrations are increased many-fold.

Authors

H. S. Jacob, A. Ruby, E. S. Overland, D. Mazia

×

Full Text PDF | Download (1.09 MB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts