Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI106625

The potential use of xylitol in glucose-6-phosphate dehydrogenase deficiency anemia

Y. M. Wang, J. H. Patterson, and J. Van Eys

Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37203

Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee 37203

Find articles by Wang, Y. in: PubMed | Google Scholar

Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37203

Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee 37203

Find articles by Patterson, J. in: PubMed | Google Scholar

Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37203

Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee 37203

Find articles by Eys, J. in: PubMed | Google Scholar

Published July 1, 1971 - More info

Published in Volume 50, Issue 7 on July 1, 1971
J Clin Invest. 1971;50(7):1421–1428. https://doi.org/10.1172/JCI106625.
© 1971 The American Society for Clinical Investigation
Published July 1, 1971 - Version history
View PDF
Abstract

NADP-linked xylitol dehydrogenase has been found to be present in human red blood cells. This enzyme activity is normal in most glucose-6-phosphate dehydrogenase (G6PD)-deficient red cells. Xylitol was explored as a potential agent for treatment of hemolysis in patients with G6PD-deficiency. Intracellular GSH (glutathione, reduced) was first converted to its oxidized form by incubation of the erythrocytes with acetylphenylhydrazine or by pretreatment with methyl phenyldiazenecarboxylate. The addition of 0.15 M xylitol was shown to be more effective than 0.15 M glucose in maintaining the levels of GSH in G6PD-deficient red cells during such oxidative challenge. Rabbit erythrocytes contain less activity of G6PD and glutathione reductase compared with the normal human adult values, but have an active xylitol dehydrogenase. The rabbit erythrocyte is sensitive to acetylphenylhydrazine and primaquine phosphate. In both in vivo and in vitro experiments, xylitol was found to partially prevent acetylphenylhydrazine induced acute hemolysis of the rabbit red cell and GSH content was found to be preserved. The intravenous injection of xylitol (0.5 g/kg body weight per 6 hr) for 6 days, seemed to be nontoxic to the animal. The results suggest that xylitol should be further investigated as an agent for the treatment of G6PD-deficient patients during acute hemolytic episodes.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1421
page 1421
icon of scanned page 1422
page 1422
icon of scanned page 1423
page 1423
icon of scanned page 1424
page 1424
icon of scanned page 1425
page 1425
icon of scanned page 1426
page 1426
icon of scanned page 1427
page 1427
icon of scanned page 1428
page 1428
Version history
  • Version 1 (July 1, 1971): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts