Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
A microperfusion study of sucrose movement across the rat proximal tubule during renal vein constriction
Norman Bank, … , William E. Yarger, Hagop S. Aynedjian
Norman Bank, … , William E. Yarger, Hagop S. Aynedjian
Published February 1, 1971
Citation Information: J Clin Invest. 1971;50(2):294-302. https://doi.org/10.1172/JCI106494.
View: Text | PDF
Research Article

A microperfusion study of sucrose movement across the rat proximal tubule during renal vein constriction

  • Text
  • PDF
Abstract

Constriction of the renal vein has been shown to inhibit net sodium and water reabsorption by the rat proximal tubule. The mechanism is unknown but might be the result of inhibition of the active sodium pump induced by changes in the interstitial fluid compartment of the kidney, or to enhanced passive backflux of sodium and water into the cell or directly into the tubular lumen. Since passive movement of solutes across epithelial membranes is determined in part by the permeability characteristics of the epithelium, an increase in the permeability of the proximal tubule during venous constriction would suggest that enhanced passive flux is involved in the inhibition of reabsorption. In the present experiments, isolated segments of rat proximal convoluted tubules were microperfused in vivo with saline while the animals were receiving 14C-labeled sucrose intravenously. In normal control animals, no sucrose was detected in the majority of the collected tubular perfusates. In rats with renal vein constriction (RVC), however, sucrose consistently appeared in the tubular perfusates. The rate of inflow of sucrose correlated with the length of the perfused segment, estimated by fractional water reabsorption. In another group of animals with renal vein constriction, inulin-14C was given intravenously and the proximal tubules similarly microperfused. Inulin did not appear in the majority of collected perfusates in these animals.

Authors

Norman Bank, William E. Yarger, Hagop S. Aynedjian

×

Full Text PDF

Download PDF (1.29 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts