Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI106337

A water-filled body plethysmograph for the measurement of pulmonary capillary blood flow during changes of intrathoracic pressure

Yoshikazu Kawakami, Harold A. Menkes, and Arthur B. DuBois

1Graduate Department of Physiology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104

Find articles by Kawakami, Y. in: PubMed | Google Scholar

1Graduate Department of Physiology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104

Find articles by Menkes, H. in: PubMed | Google Scholar

1Graduate Department of Physiology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104

Find articles by DuBois, A. in: PubMed | Google Scholar

Published June 1, 1970 - More info

Published in Volume 49, Issue 6 on June 1, 1970
J Clin Invest. 1970;49(6):1237–1251. https://doi.org/10.1172/JCI106337.
© 1970 The American Society for Clinical Investigation
Published June 1, 1970 - Version history
View PDF
Abstract

A water-filled body plethysmograph was constructed to measure gas exchange in man. As compared to an air-filled plethysmograph, its advantages were greater sensitivity, less thermal drift, and no change from adiabatic to isothermal conditions after a stepwise change of pressure. When five subjects were completely immersed within it and were breathing to the ambient atmosphere, they had a normal heart rate, oxygen consumption, CO2 output, and functional residual capacity. Pulmonary capillary blood flow ([unk]Qc) during and after Valsalva and Mueller maneuvers was calculated from measurements of N2O uptake. Control measurements of [unk]Qc were 2.58 liters/min per m2 at rest and 3.63 liters/min per m2 after moderate exercise. During the Valsalva maneuver at rest (intrapulmonary pressure: 24, SD 3.0, mm Hg), [unk]Qc decreased from a control of 2.58, SD 0.43, liters/min per m2 to 1.62, SD 0.26, liters/min per m2 with a decrease in pulmonary capillary stroke volume from a control of 42.4, SD 8.8, ml/stroke per m2 to 25.2, SD 5.5, ml/stroke per m2. After release of the Valsalva, there was an overshoot in [unk]Qc averaging +0.78, SD 0.41, liter/min per m2 accompanied by a significant increase in heart rate. Similar changes occurred during and after the Valsalva following moderate exercise. During the Mueller maneuver at rest and after exercise, [unk]Qc, heart rate, and central stroke volume did not change significantly.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1237
page 1237
icon of scanned page 1238
page 1238
icon of scanned page 1239
page 1239
icon of scanned page 1240
page 1240
icon of scanned page 1241
page 1241
icon of scanned page 1242
page 1242
icon of scanned page 1243
page 1243
icon of scanned page 1244
page 1244
icon of scanned page 1245
page 1245
icon of scanned page 1246
page 1246
icon of scanned page 1247
page 1247
icon of scanned page 1248
page 1248
icon of scanned page 1249
page 1249
icon of scanned page 1250
page 1250
icon of scanned page 1251
page 1251
Version history
  • Version 1 (June 1, 1970): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts