Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI106316

Mechanism of excessive purine biosynthesis in hypoxanthine-guanine phosphoribosyltransferase deficiency

Leif B. Sorensen

Department of Medicine, the Pritzker School of Medicine, University of Chicago, and the Argonne Cancer Research Hospital, Chicago, Illinois 60637

Find articles by Sorensen, L. in: PubMed | Google Scholar

Published May 1, 1970 - More info

Published in Volume 49, Issue 5 on May 1, 1970
J Clin Invest. 1970;49(5):968–978. https://doi.org/10.1172/JCI106316.
© 1970 The American Society for Clinical Investigation
Published May 1, 1970 - Version history
View PDF
Abstract

Certain gouty subjects with excessive de novo purine synthesis are deficient in hypoxanthineguanine phosphoribosyltransferase (HG-PRTase [EC 2.4.2.8]). The mechanism of accelerated uric acid formation in these patients was explored by measuring the incorporation of glycine-14C into various urinary purine bases of normal and enzyme-deficient subjects during treatment with the xanthine oxidase inhibitor, allopurinol.

In the presence of normal HG-PRTase activity, allopurinol reduced purine biosynthesis as demonstrated by diminished excretion of total urinary purine or by reduction of glycine-14C incorporation into hypoxanthine, xanthine, and uric acid to less than one-half of control values. A boy with the Lesch-Nyhan syndrome was resistant to this effect of allopurinol while a patient with 12.5% of normal enzyme activity had an equivocal response. Three patients with normal HG-PRTase activity had a mean molar ratio of hypoxanthine to xanthine in the urine of 0.28, whereas two subjects who were deficient in HG-PRTase had reversal of this ratio (1.01 and 1.04). The patterns of 14C-labeling observed in HG-PRTase deficiency reflected the role of hypoxanthine as precursor of xanthine. The data indicate that excessive uric acid in HG-PRTase deficiency is derived from hypoxanthine which is insufficiently reutilized and, as a consequence thereof, catabolized inordinately to uric acid. The data provide evidence for cyclic interconversion of adenine and hypoxanthine derivatives. Cleavage of inosinic acid to hypoxanthine via inosine does not contribute significantly to the formation of uric acid in either normal man or in patients with HG-PRTase deficiency.

HG-PRTase was not completely absent in red blood cells from a boy with the Lesch-Nyhan syndrome; with hypoxanthine as substrate, the activity in erythrocyte hemolysates was 0.64% of normal values.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 968
page 968
icon of scanned page 969
page 969
icon of scanned page 970
page 970
icon of scanned page 971
page 971
icon of scanned page 972
page 972
icon of scanned page 973
page 973
icon of scanned page 974
page 974
icon of scanned page 975
page 975
icon of scanned page 976
page 976
icon of scanned page 977
page 977
icon of scanned page 978
page 978
Version history
  • Version 1 (May 1, 1970): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts