Abstract

This study sought to elucidate the mechanism by which human red cells, in a variety of clinical settings, become coated in vivo with autologous complement components in the absence of anti-red cell autoantibodies demonstrable by standard methods. By means of a newly developed complement-fixing antibody consumption test, previously undetectable red cell-bound γG globulin could be detected and quantified. By this technique, the complement-coated red cells of 13 of 16 patients were shown to carry abnormally high numbers of γG molecules per cell, which were nevertheless below the level for detection by the direct antiglobulin test. Eluates were made from the red cells of seven of these patients and each eluate, when sufficiently concentrated, was capable of sensitizing normal human red cells (with γG antibodies) to give a positive indirect antiglobulin test with anti-γG serum. In the presence of fresh normal serum, six of the eluates so tested were capable of fixing complement to normal human red cells. The antibodies in the red cell eluates did not exhibit Rh specificity and did not react with nonprimate red cells. When studied by sucrose gradient ultracentrifugation, the γG antibodies to human red cells in these eluates sedimented in the 7S region. It is concluded that in many patients in whom direct antiglobulin tests reveal only cell-bound complement, the complement fixation is mediated in vivo by small quantities of “warm-reacting” erythrocyte autoantibodies of the γG class.

Authors

Bruce C. Gilliland, John P. Leddy, John H. Vaughan

×

Other pages: