Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI105999

The resistance of collateral channels in excised human lungs

James C. Hogg, Peter T. Macklem, and William M. Thurlbeck

Department of Pathology, McGill University and the Cardiorespiratory Service, Royal Victoria Hospital, Montreal, Canada

Find articles by Hogg, J. in: JCI | PubMed | Google Scholar

Department of Pathology, McGill University and the Cardiorespiratory Service, Royal Victoria Hospital, Montreal, Canada

Find articles by Macklem, P. in: JCI | PubMed | Google Scholar

Department of Pathology, McGill University and the Cardiorespiratory Service, Royal Victoria Hospital, Montreal, Canada

Find articles by Thurlbeck, W. in: JCI | PubMed | Google Scholar

Published March 1, 1969 - More info

Published in Volume 48, Issue 3 on March 1, 1969
J Clin Invest. 1969;48(3):421–431. https://doi.org/10.1172/JCI105999.
© 1969 The American Society for Clinical Investigation
Published March 1, 1969 - Version history
View PDF
Abstract

We measured the resistance of collateral channels, Rcol, in incomplete interlobar fissures in eight normal and eight emphysematous excised human lungs. Similar measurements were also made from the basal segments to the superior segment of the lower lobe in three normal and five emphysematous lungs. The lobe or segments were inflated through a bronchial cannula; air leaked through collateral channels and out of the other lobe or segment through a pneumotachograph which measured flow. Catheters inserted directly into the lung through the pleural surface on either side of the collateral channels measured the alveolar pressure difference producing collateral flow. Rcol is the ratio of this pressure difference to flow. By also measuring the inflating pressure and the airway pressure at the pneumotachograph, we calculated the lobar or segmental airway resistance, Raw. In the normal lungs Rcol varied inversely with lung volume and was higher on inflation than on deflation. Raw was very small compared to Rcol which ranged from 260 to 3300 cm H2O/liter per sec when the distending pressure was 20 cm H2O. In the emphysematous lungs on the other hand, Rcol was markedly decreased and ranged from 5 to 20 cm H2O/liters per sec at the same distending pressure and was less than Raw. We conclude that collateral channels are important ventilatory pathways in emphysema. When many units within a lung are ventilated by these pathways there may be disturbances of gas exchange and phase differences between normally and abnormally ventilated areas.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 421
page 421
icon of scanned page 422
page 422
icon of scanned page 423
page 423
icon of scanned page 424
page 424
icon of scanned page 425
page 425
icon of scanned page 426
page 426
icon of scanned page 427
page 427
icon of scanned page 428
page 428
icon of scanned page 429
page 429
icon of scanned page 430
page 430
icon of scanned page 431
page 431
Version history
  • Version 1 (March 1, 1969): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts