Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI105837

Frequency dependence of flow resistance in patients with obstructive lung disease

Gunnar Grimby, Tamotsu Takishima, William Graham, Peter Macklem, and Jere Mead

1Department of Physiology, School of Public Health, Harvard University, and the Thoracic Services, Boston University Medical School, Boston, Massachusetts 02115

Find articles by Grimby, G. in: PubMed | Google Scholar

1Department of Physiology, School of Public Health, Harvard University, and the Thoracic Services, Boston University Medical School, Boston, Massachusetts 02115

Find articles by Takishima, T. in: PubMed | Google Scholar

1Department of Physiology, School of Public Health, Harvard University, and the Thoracic Services, Boston University Medical School, Boston, Massachusetts 02115

Find articles by Graham, W. in: PubMed | Google Scholar

1Department of Physiology, School of Public Health, Harvard University, and the Thoracic Services, Boston University Medical School, Boston, Massachusetts 02115

Find articles by Macklem, P. in: PubMed | Google Scholar

1Department of Physiology, School of Public Health, Harvard University, and the Thoracic Services, Boston University Medical School, Boston, Massachusetts 02115

Find articles by Mead, J. in: PubMed | Google Scholar

Published June 1, 1968 - More info

Published in Volume 47, Issue 6 on June 1, 1968
J Clin Invest. 1968;47(6):1455–1465. https://doi.org/10.1172/JCI105837.
© 1968 The American Society for Clinical Investigation
Published June 1, 1968 - Version history
View PDF
Abstract

Total respiratory, pulmonary, and chest wall flow resistances were determined by means of forced pressure and flow oscillations (3-9 cps) superimposed upon spontaneous breathing in a group of patients with varying degrees of obstructive lung disease. Increased total respiratory and pulmonary resistances were found, whereas the chest wall resistance was normal or subnormal. The total respiratory and pulmonary resistances decreased with increasing frequencies. Static compliance of the lung was measured during interrupted slow expiration, and dynamic compliance was measured during quiet and rapid spontaneous breathing. Compliance was found to be frequency-dependent. The frequency dependence of resistance and compliance are interpreted as effects of uneven distribution of the mechanical properties in the lungs. The practical application of the oscillatory technique to the measurement of flow resistance in patients with lung disease is discussed. Measurements of total respiratory resistance by the forced oscillatory technique at frequencies less than 5 cps appear to be as useful for assessing abnormalities in airway resistance as either the plethysmographic or esophageal pressure techniques.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1455
page 1455
icon of scanned page 1456
page 1456
icon of scanned page 1457
page 1457
icon of scanned page 1458
page 1458
icon of scanned page 1459
page 1459
icon of scanned page 1460
page 1460
icon of scanned page 1461
page 1461
icon of scanned page 1462
page 1462
icon of scanned page 1463
page 1463
icon of scanned page 1464
page 1464
icon of scanned page 1465
page 1465
Version history
  • Version 1 (June 1, 1968): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts