Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI105582

Studies on the Coumarin Anticoagulant Drugs: Interaction of Human Plasma Albumin and Warfarin Sodium

Robert A. O'Reilly

Department of Medicine, Santa Clara Valley Medical Center, San Jose, Calif.

Department of Medicine, University of California School of Medicine, San Francisco

Institute for Medical Research of Santa Clara County, San Jose, Calif.

†

Address requests for reprints to Dr. Robert A. O'Reilly, Dept. of Medicine, Santa Clara Valley Medical Center, San Jose, Calif. 95128.

*

Submitted for publication October 3, 1966; accepted January 27, 1967.

Supported by grant HE-8058-04 from the National Institutes of Health.

Find articles by O'Reilly, R. in: PubMed | Google Scholar

Published May 1, 1967 - More info

Published in Volume 46, Issue 5 on May 1, 1967
J Clin Invest. 1967;46(5):829–837. https://doi.org/10.1172/JCI105582.
© 1967 The American Society for Clinical Investigation
Published May 1, 1967 - Version history
View PDF
Abstract

In studies by continuous flow electrophoresis the coumarin anticoagulant drug warfarin sodium was found to be bound solely to the albumin fraction of the plasma proteins. The interaction was studied in detail by equilibrium dialysis of solutions of crystalline human plasma albumin and warfarin sodium. Analysis of the data showed that albumin possesses a single strong binding site for warfarin with an association constant of 154,000 at 3° C and secondary classes of several sites with a much lower affinity. The free energy of binding for the first anion determined at 3° and 37° C was -6.54 and -7.01 kcal per mole, respectively. The standard enthalpy change for the interaction was -3.48 kcal per mole, and the entropy change was +11.2 U.

The negative enthalpy change was surprisingly large and the positive entropy change small for an anion-albumin interaction, suggesting significant nonionic binding. The inability to saturate the albumin binding sites, even when high concentrations of warfarin were used, is consistent with a reversible configurational alteration of the albumin molecule during the binding process. The thermodynamic data indicate that the albumin binding sites for warfarin sodium are formed during the process of binding, rather than being performed as in antigen-antibody reactions. The strength of the binding process suggests that many of the pharmacodynamic characteristics of warfarin sodium in man are determined by its strong interaction with plasma albumin. Such correlations of the physicochemical interactions and biologic effects of the coumarin anticoagulant drugs should lead to a better understanding of their mechanisms of action.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 829
page 829
icon of scanned page 830
page 830
icon of scanned page 831
page 831
icon of scanned page 832
page 832
icon of scanned page 833
page 833
icon of scanned page 834
page 834
icon of scanned page 835
page 835
icon of scanned page 836
page 836
icon of scanned page 837
page 837
Version history
  • Version 1 (May 1, 1967): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts