Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Evidence for a role of collagen synthesis in arterial smooth muscle cell migration.
E F Rocnik, … , B M Chan, J G Pickering
E F Rocnik, … , B M Chan, J G Pickering
Published May 1, 1998
Citation Information: J Clin Invest. 1998;101(9):1889-1898. https://doi.org/10.1172/JCI1025.
View: Text | PDF
Research Article

Evidence for a role of collagen synthesis in arterial smooth muscle cell migration.

  • Text
  • PDF
Abstract

Migration of smooth muscle cells (SMCs) and collagen synthesis by SMCs are central to the pathophysiology of vascular disease. Both processes can be induced shortly after vascular injury; however, a functional relationship between them has not been established. In this study, we determined if collagen synthesis was required for SMC migration, using ethyl-3,4-dihydroxybenzoate (EDHB), an inhibitor of prolyl-4-hydroxylase, and 3,4-DL-dehydroproline (DHP), a proline analogue, which we demonstrate inhibit collagen elaboration by porcine arterial SMCs. SMCs exposed to EDHB or DHP attached normally to collagen- and vitronectin-coated substrates; however, spreading on collagen but not vitronectin was inhibited. SMC migration speed, quantified by digital time-lapse video microscopy, was significantly and reversibly reduced by EDHB and DHP. Flow cytometry revealed that expression of beta1 integrins, through which SMCs interact with collagen, was unaffected by EDHB or DHP. However, both inhibitors prevented normal clustering of beta1 integrins on the surface of SMCs, consistent with a lack of appropriate matrix ligands for integrin engagement. Moreover, there was impaired recruitment of vinculin into focal adhesion complexes of spreading SMCs and disassembly of the smooth muscle alpha-actin-containing cytoskeleton. These findings suggest that de novo collagen synthesis plays a role in SMC migration and implicates a mechanism whereby newly synthesized collagen may be necessary to maintain the transcellular traction system required for effective locomotion.

Authors

E F Rocnik, B M Chan, J G Pickering

×

Full Text PDF | Download (502.25 KB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts