When blood is exposed to negatively charged surface materials such as glass, an enzymatic cascade known as the contact system becomes activated. This cascade is initiated by autoactivation of Factor XII and leads to both coagulation (via Factor XI) and an inflammatory response (via the kallikrein-kinin system). However, while Factor XII is important for coagulation in vitro, it is not important for physiological hemostasis, so the physiological role of the contact system remains elusive. Using patient blood samples and isolated proteins, we identified a novel class of Factor XII activators. Factor XII was activated by misfolded protein aggregates that formed by denaturation or by surface adsorption, which specifically led to the activation of the kallikrein-kinin system without inducing coagulation. Consistent with this, we found that Factor XII, but not Factor XI, was activated and kallikrein was formed in blood from patients with systemic amyloidosis, a disease marked by the accumulation and deposition of misfolded plasma proteins. These results show that the kallikrein-kinin system can be activated by Factor XII, in a process separate from the coagulation cascade, and point to a protective role for Factor XII following activation by misfolded protein aggregates.
Coen Maas, José W.P. Govers-Riemslag, Barend Bouma, Bettina Schiks, Bouke P.C. Hazenberg, Henk M. Lokhorst, Per Hammarström, Hugo ten Cate, Philip G. de Groot, Bonno N. Bouma, Martijn F.B.G. Gebbink
Arterial blood flow enhances glycoprotein Ibα (GPIbα) binding to vWF, which initiates platelet adhesion to injured vessels. Mutations in the vWF A1 domain that cause type 2B von Willebrand disease (vWD) reduce the flow requirement for adhesion. Here we show that increasing force on GPIbα/vWF bonds first prolonged (“catch”) and then shortened (“slip”) bond lifetimes. Two type 2B vWD A1 domain mutants, R1306Q and R1450E, converted catch bonds to slip bonds by prolonging bond lifetimes at low forces. Steered molecular dynamics simulations of GPIbα dissociating from the A1 domain suggested mechanisms for catch bonds and their conversion by the A1 domain mutations. Catch bonds caused platelets and GPIbα-coated microspheres to roll more slowly on WT vWF and WT A1 domains as flow increased from suboptimal levels, explaining flow-enhanced rolling. Longer bond lifetimes at low forces eliminated the flow requirement for rolling on R1306Q and R1450E mutant A1 domains. Flowing platelets agglutinated with microspheres bearing R1306Q or R1450E mutant A1 domains, but not WT A1 domains. Therefore, catch bonds may prevent vWF multimers from agglutinating platelets. A disintegrin and metalloproteinase with a thrombospondin type 1 motif–13 (ADAMTS-13) reduced platelet agglutination with microspheres bearing a tridomain A1A2A3 vWF fragment with the R1450E mutation in a shear-dependent manner. We conclude that in type 2B vWD, prolonged lifetimes of vWF bonds with GPIbα on circulating platelets may allow ADAMTS-13 to deplete large vWF multimers, causing bleeding.
Tadayuki Yago, Jizhong Lou, Tao Wu, Jun Yang, Jonathan J. Miner, Leslie Coburn, José A. López, Miguel A. Cruz, Jing-Fei Dong, Larry V. McIntire, Rodger P. McEver, Cheng Zhu
Numerous studies have established a causal link between aberrant mammalian target of rapamycin (mTOR) activation and tumorigenesis, indicating that mTOR inhibition may have therapeutic potential. In this study, we show that rapamycin and its analogs activate the MAPK pathway in human cancer, in what represents a novel mTORC1-MAPK feedback loop. We found that tumor samples from patients with biopsy-accessible solid tumors of advanced disease treated with RAD001, a rapamycin derivative, showed an administration schedule–dependent increase in activation of the MAPK pathway. RAD001 treatment also led to MAPK activation in a mouse model of prostate cancer. We further show that rapamycin-induced MAPK activation occurs in both normal cells and cancer cells lines and that this feedback loop depends on an S6K-PI3K-Ras pathway. Significantly, pharmacological inhibition of the MAPK pathway enhanced the antitumoral effect of mTORC1 inhibition by rapamycin in cancer cells in vitro and in a xenograft mouse model. Taken together, our findings identify MAPK activation as a consequence of mTORC1 inhibition and underscore the potential of a combined therapeutic approach with mTORC1 and MAPK inhibitors, currently employed as single agents in the clinic, for the treatment of human cancers.
Arkaitz Carracedo, Li Ma, Julie Teruya-Feldstein, Federico Rojo, Leonardo Salmena, Andrea Alimonti, Ainara Egia, Atsuo T. Sasaki, George Thomas, Sara C. Kozma, Antonella Papa, Caterina Nardella, Lewis C. Cantley, Jose Baselga, Pier Paolo Pandolfi
The AKT/mammalian target of rapamycin (AKT/mTOR) and ERK MAPK signaling pathways have been shown to cooperate in prostate cancer progression and the transition to androgen-independent disease. We have now tested the effects of combinatorial inhibition of these pathways on prostate tumorigenicity by performing preclinical studies using a genetically engineered mouse model of prostate cancer. We report here that combination therapy using rapamycin, an inhibitor of mTOR, and PD0325901, an inhibitor of MAPK kinase 1 (MEK; the kinase directly upstream of ERK), inhibited cell growth in cultured prostate cancer cell lines and tumor growth particularly for androgen-independent prostate tumors in the mouse model. We further showed that such inhibition leads to inhibition of proliferation and upregulated expression of the apoptotic regulator Bcl-2–interacting mediator of cell death (Bim). Furthermore, analyses of human prostate cancer tissue microarrays demonstrated that AKT/mTOR and ERK MAPK signaling pathways are often coordinately deregulated during prostate cancer progression in humans. We therefore propose that combination therapy targeting AKT/mTOR and ERK MAPK signaling pathways may be an effective treatment for patients with advanced prostate cancer, in particular those with hormone-refractory disease.
Carolyn Waugh Kinkade, Mireia Castillo-Martin, Anna Puzio-Kuter, Jun Yan, Thomas H. Foster, Hui Gao, Yvonne Sun, Xuesong Ouyang, William L. Gerald, Carlos Cordon-Cardo, Cory Abate-Shen
Parkinson disease (PD) is characterized by dopaminergic neurodegeneration and intracellular inclusions of α-synuclein amyloid fibers, which are stable and difficult to dissolve. Whether inclusions are neuroprotective or pathological remains controversial, because prefibrillar oligomers may be more toxic than amyloid inclusions. Thus, whether therapies should target inclusions, preamyloid oligomers, or both is a critically important issue. In yeast, the protein-remodeling factor Hsp104 cooperates with Hsp70 and Hsp40 to dissolve and reactivate aggregated proteins. Metazoans, however, have no Hsp104 ortholog. Here we introduced Hsp104 into a rat PD model. Remarkably, Hsp104 reduced formation of phosphorylated α-synuclein inclusions and prevented nigrostriatal dopaminergic neurodegeneration induced by PD-linked α-synuclein (A30P). An in vitro assay employing pure proteins revealed that Hsp104 prevented fibrillization of α-synuclein and PD-linked variants (A30P, A53T, E46K). Hsp104 coupled ATP hydrolysis to the disassembly of preamyloid oligomers and amyloid fibers composed of α-synuclein. Furthermore, the mammalian Hsp70 and Hsp40 chaperones, Hsc70 and Hdj2, enhanced α-synuclein fiber disassembly by Hsp104. Hsp104 likely protects dopaminergic neurons by antagonizing toxic α-synuclein assemblies and might have therapeutic potential for PD and other neurodegenerative amyloidoses.
Christophe Lo Bianco, James Shorter, Etienne Régulier, Hilal Lashuel, Takeshi Iwatsubo, Susan Lindquist, Patrick Aebischer
Some cases of pre–B cell acute lymphoblastic leukemia (pre–B-ALL) are caused by the Philadelphia (Ph) chromosome–encoded BCR-ABL oncogene, and these tend to have a poor prognosis. Inhibitors of the PI3K/AKT pathway reduce BCR-ABL–mediated transformation in vitro; however, the specific PI3K isoforms involved are poorly defined. Using a murine model of Ph+ pre–B-ALL, we found that deletion of both Pik3r1 and Pik3r2, genes encoding class IA PI3K regulatory isoforms, severely impaired transformation. BCR-ABL–dependent pre/pro-B cell lines could be established at low frequency from progenitors that lacked these genes, but the cells were smaller, proliferated more slowly, and failed to cause leukemia in vivo. These cell lines displayed nearly undetectable PI3K signaling function and were resistant to the PI3K inhibitor wortmannin. However, they maintained activation of mammalian target of rapamycin (mTOR) and were more sensitive to rapamycin. Treatment with rapamycin caused feedback activation of AKT in WT cell lines but not PI3K-deficient lines. A dual inhibitor of PI3K and mTOR, PI-103, was more effective than rapamycin at suppressing proliferation of mouse pre–B-ALL and human CD19+CD34+ Ph+ ALL leukemia cells treated with the ABL kinase inhibitor imatinib. Our findings provide mechanistic insights into PI3K dependency in oncogenic networks and provide a rationale for targeting class IA PI3K, alone or together with mTOR, in the treatment of Ph+ ALL.
Michael G. Kharas, Matthew R. Janes, Vanessa M. Scarfone, Michael B. Lilly, Zachary A. Knight, Kevan M. Shokat, David A. Fruman
β3-adrenergic receptor (β3-AR) activation produces a negative inotropic effect in human ventricles. Here we explored the role of β3-AR in the human atrium. Unexpectedly, β3-AR activation increased human atrial tissue contractility and stimulated the L-type Ca2+ channel current (ICa,L) in isolated human atrial myocytes (HAMs). Right atrial tissue specimens were obtained from 57 patients undergoing heart surgery for congenital defects, coronary artery diseases, valve replacement, or heart transplantation. The ICa,L and isometric contraction were recorded using a whole-cell patch-clamp technique and a mechanoelectrical force transducer. Two selective β3-AR agonists, SR58611 and BRL37344, and a β3-AR partial agonist, CGP12177, stimulated ICa,L in HAMs with nanomolar potency and a 60%–90% efficacy compared with isoprenaline. The β3-AR agonists also increased contractility but with a much lower efficacy (~10%) than isoprenaline. The β3-AR antagonist L-748,337, β1-/β2-AR antagonist nadolol, and β1-/β2-/β3-AR antagonist bupranolol were used to confirm the involvement of β3-ARs (and not β1-/β2-ARs) in these effects. The β3-AR effects involved the cAMP/PKA pathway, since the PKA inhibitor H89 blocked ICa,L stimulation and the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX) strongly increased the positive inotropic effect. Therefore, unlike in ventricular tissue, β3-ARs are positively coupled to L-type Ca2+ channels and contractility in human atrial tissues through a cAMP-dependent pathway.
V. Arvydas Skeberdis, Vida Gendvilienė, Danguolė Zablockaitė, Rimantas Treinys, Regina Mačianskienė, Andrius Bogdelis, Jonas Jurevičius, Rodolphe Fischmeister
Iatrogenic tumor cell implantation within surgical wounds can compromise curative cancer surgery. Adhesion of cancer cells, in particular colon cancer cells, is stimulated by exposure to increased extracellular pressure through a cytoskeleton-dependent signaling mechanism requiring FAK, Src, Akt, and paxillin. Mechanical stimuli during tumor resection may therefore negatively impact patient outcome. We hypothesized that perioperative administration of colchicine, which prevents microtubule polymerization, could disrupt pressure-stimulated tumor cell adhesion to surgical wounds and enhance tumor-free survival. Ex vivo treatment of Co26 and Co51 colon cancer cells with colchicine inhibited pressure-stimulated cell adhesion to murine surgical wounds and blocked pressure-induced FAK and Akt phosphorylation. Surgical wound contamination with pressure-activated Co26 and Co51 cells significantly reduced tumor-free survival compared with contamination with tumor cells under ambient pressure. Mice treated with pressure-activated Co26 and Co51 cells from tumors preoperatively treated with colchicine in vivo displayed reduced surgical site implantation and significantly increased tumor-free survival compared with mice exposed to pressure-activated cells from tumors not pretreated with colchicine. Our data suggest that pressure activation of malignant cells promotes tumor development and impairs tumor-free survival and that perioperative colchicine administration or similar interventions may inhibit this effect.
David H. Craig, Cheri R. Owen, William C. Conway, Mary F. Walsh, Christina Downey, Marc D. Basson
Pseudomonas aeruginosa uses quorum sensing, an interbacterial communication system, to regulate gene expression. The signaling molecule N-3-oxododecanoyl homoserine lactone (3OC12-HSL) is thought to play a central role in quorum sensing. Since 3OC12-HSL can be degraded by paraoxonase (PON) family members, we hypothesized that PONs regulate P. aeruginosa virulence in vivo. We chose Drosophila melanogaster as our model organism because it has been shown to be a tractable model for investigating host-pathogen interactions and lacks PONs. By using quorum-sensing–deficient P. aeruginosa, synthetic acyl-HSLs, and transgenic expression of human PON1, we investigated the role of 3OC12-HSL and PON1 on P. aeruginosa virulence. We found that P. aeruginosa virulence in flies was dependent upon 3OC12-HSL. PON1 transgenic flies expressed enzymatically active PON1 and thereby exhibited arylesterase activity and resistance to organophosphate toxicity. Moreover, PON1 flies were protected from P. aeruginosa lethality, and protection was dependent on the lactonase activity of PON1. Our findings show that PON1 can interfere with quorum sensing in vivo and provide insight into what we believe is a novel role for PON1 in the innate immune response to quorum-sensing–dependent pathogens. These results raise intriguing possibilities about human-pathogen interactions, including potential roles for PON1 as a modifier gene and for PON1 protein as a regulator of normal bacterial florae, a link between infection/inflammation and cardiovascular disease, and a potential therapeutic modality.
David A. Stoltz, Egon A. Ozer, Peter J. Taft, Marilyn Barry, Lei Liu, Peter J. Kiss, Thomas O. Moninger, Matthew R. Parsek, Joseph Zabner
Neuronal ceroid lipofuscinoses represent the most common childhood neurodegenerative storage disorders. Infantile neuronal ceroid lipofuscinosis (INCL) is caused by palmitoyl protein thioesterase-1 (PPT1) deficiency. Although INCL patients show signs of abnormal neurotransmission, manifested by myoclonus and seizures, the molecular mechanisms by which PPT1 deficiency causes this abnormality remain obscure. Neurotransmission relies on repeated cycles of exo- and endocytosis of the synaptic vesicles (SVs), in which several palmitoylated proteins play critical roles. These proteins facilitate membrane fusion, which is required for neurotransmitter exocytosis, recycling of the fused SV membrane components, and regeneration of fresh vesicles. However, palmitoylated proteins require depalmitoylation for recycling. Using postmortem brain tissues from an INCL patient and tissue from the PPT1-knockout (PPT1-KO) mice that mimic INCL, we report here that PPT1 deficiency caused persistent membrane anchorage of the palmitoylated SV proteins, which hindered the recycling of the vesicle components that normally fuse with the presynaptic plasma membrane during SV exocytosis. Thus, the regeneration of fresh SVs, essential for maintaining the SV pool size at the synapses, was impaired, leading to a progressive loss of readily releasable SVs and abnormal neurotransmission. This abnormality may contribute to INCL neuropathology.
Sung-Jo Kim, Zhongjian Zhang, Chinmoy Sarkar, Pei-Chih Tsai, Yi-Ching Lee, Louis Dye, Anil B. Mukherjee
No posts were found with this tag.