Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Research Article

  • 25,754 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 538
  • 539
  • 540
  • …
  • 2575
  • 2576
  • Next →
ABCG1 and HDL protect against endothelial dysfunction in mice fed a high-cholesterol diet
Naoki Terasaka, Shuiqing Yu, Laurent Yvan-Charvet, Nan Wang, Nino Mzhavia, Read Langlois, Tamara Pagler, Rong Li, Carrie L. Welch, Ira J. Goldberg, Alan R. Tall
Naoki Terasaka, Shuiqing Yu, Laurent Yvan-Charvet, Nan Wang, Nino Mzhavia, Read Langlois, Tamara Pagler, Rong Li, Carrie L. Welch, Ira J. Goldberg, Alan R. Tall
View: Text | PDF

ABCG1 and HDL protect against endothelial dysfunction in mice fed a high-cholesterol diet

  • Text
  • PDF
Abstract

Plasma HDL levels are inversely related to the incidence of atherosclerotic disease. Some of the atheroprotective effects of HDL are likely mediated via preservation of EC function. Whether the beneficial effects of HDL on ECs depend on its involvement in cholesterol efflux via the ATP-binding cassette transporters ABCA1 and ABCG1, which promote efflux of cholesterol and oxysterols from macrophages, has not been investigated. To address this, we assessed endothelial function in Abca1–/–, Abcg1–/–, and Abca1–/–Abcg1–/– mice fed either a high-cholesterol diet (HCD) or a Western diet (WTD). Non-atherosclerotic arteries from HCD-fed Abcg1–/– and Abca1–/–Abcg1–/– mice exhibited a marked decrease in endothelium-dependent vasorelaxation, while Abca1–/– mice had a milder defect. In addition, eNOS activity was reduced in aortic homogenates generated from Abcg1–/– mice fed either a HCD or a WTD, and this correlated with decreased levels of the active dimeric form of eNOS. More detailed analysis indicated that ABCG1 was expressed primarily in ECs, and that these cells accumulated the oxysterol 7-ketocholesterol (7-KC) when Abcg1–/– mice were fed a WTD. Consistent with these data, ABCG1 had a major role in promoting efflux of cholesterol and 7-KC in cultured human aortic ECs (HAECs). Furthermore, HDL treatment of HAECs prevented 7-KC–induced ROS production and active eNOS dimer disruption in an ABCG1-dependent manner. Our data suggest that ABCG1 and HDL maintain EC function in HCD-fed mice by promoting efflux of cholesterol and 7-oxysterols and preserving active eNOS dimer levels.

Authors

Naoki Terasaka, Shuiqing Yu, Laurent Yvan-Charvet, Nan Wang, Nino Mzhavia, Read Langlois, Tamara Pagler, Rong Li, Carrie L. Welch, Ira J. Goldberg, Alan R. Tall

×

Notch1 is an effector of Akt and hypoxia in melanoma development
Barbara Bedogni, James A. Warneke, Brian J. Nickoloff, Amato J. Giaccia, Marianne Broome Powell
Barbara Bedogni, James A. Warneke, Brian J. Nickoloff, Amato J. Giaccia, Marianne Broome Powell
View: Text | PDF

Notch1 is an effector of Akt and hypoxia in melanoma development

  • Text
  • PDF
Abstract

Melanomas are highly aggressive neoplasms resistant to most conventional therapies. These tumors result from the interaction of altered intracellular tumor suppressors and oncogenes with the microenvironment in which these changes occur. We previously demonstrated that physiologic skin hypoxia contributes to melanomagenesis in conjunction with Akt activation. Here we show that Notch1 signaling is elevated in human melanoma samples and cell lines and is required for Akt and hypoxia to transform melanocytes in vitro. Notch1 facilitated melanoma development in a xenograft model by maintaining cell proliferation and by protecting cells from stress-induced cell death. Hyperactivated PI3K/Akt signaling led to upregulation of Notch1 through NF-κB activity, while the low oxygen content normally found in skin increased mRNA and protein levels of Notch1 via stabilization of HIF-1α. Taken together, these findings demonstrate that Notch1 is a key effector of both Akt and hypoxia in melanoma development and identify the Notch signaling pathway as a potential therapeutic target in melanoma treatment.

Authors

Barbara Bedogni, James A. Warneke, Brian J. Nickoloff, Amato J. Giaccia, Marianne Broome Powell

×

SREBP-2 regulates gut peptide secretion through intestinal bitter taste receptor signaling in mice
Tae-Il Jeon, Bing Zhu, Jarrod L. Larson, Timothy F. Osborne
Tae-Il Jeon, Bing Zhu, Jarrod L. Larson, Timothy F. Osborne
View: Text | PDF

SREBP-2 regulates gut peptide secretion through intestinal bitter taste receptor signaling in mice

  • Text
  • PDF
Abstract

Bitter taste–sensing G protein–coupled receptors (type 2 taste receptors [T2Rs]) are expressed in taste receptor cells of the tongue, where they play an important role in limiting ingestion of bitter-tasting, potentially toxic compounds. T2Rs are also expressed in gut-derived enteroendocrine cells, where they have also been hypothesized to play a role in limiting toxin absorption. In this study, we have shown that T2R gene expression in both cultured mouse enteroendocrine cells and mouse intestine is regulated by the cholesterol-sensitive SREBP-2. In addition, T2R stimulation of cholecystokinin (CCK) secretion was enhanced directly by SREBP-2 in cultured cells and in mice fed chow supplemented with lovastatin and ezetimibe (L/E) to decrease dietary sterol absorption and increase nuclear activity of SREBP-2. Low-cholesterol diets are naturally composed of high amounts of plant matter that is likely to contain dietary toxins, and CCK is known to improve dietary absorption of fats, slow gastric emptying, and decrease food intake. Thus, these studies suggest that SREBP-2 activation of bitter signaling receptors in the intestine may sensitize the gut to a low-fat diet and to potential accompanying food-borne toxins that make it past the initial aversive response in the mouth.

Authors

Tae-Il Jeon, Bing Zhu, Jarrod L. Larson, Timothy F. Osborne

×

Conferring indirect allospecificity on CD4+CD25+ Tregs by TCR gene transfer favors transplantation tolerance in mice
Julia Yuen-Shan Tsang, Yakup Tanriver, Shuiping Jiang, Shao-An Xue, Kulachelvy Ratnasothy, Daxin Chen, Hans J. Stauss, R. Pat Bucy, Giovanna Lombardi, Robert Lechler
Julia Yuen-Shan Tsang, Yakup Tanriver, Shuiping Jiang, Shao-An Xue, Kulachelvy Ratnasothy, Daxin Chen, Hans J. Stauss, R. Pat Bucy, Giovanna Lombardi, Robert Lechler
View: Text | PDF

Conferring indirect allospecificity on CD4+CD25+ Tregs by TCR gene transfer favors transplantation tolerance in mice

  • Text
  • PDF
Abstract

T cell responses to MHC-mismatched transplants can be mediated via direct recognition of allogeneic MHC molecules on the cells of the transplant or via recognition of allogeneic peptides presented on the surface of recipient APCs in recipient MHC molecules — a process known as indirect recognition. As CD4+CD25+ Tregs play an important role in regulating alloresponses, we investigated whether mouse Tregs specific for allogeneic MHC molecules could be generated in vitro and could promote transplantation tolerance in immunocompetent recipient mice. Tregs able to directly recognize allogeneic MHC class II molecules (dTregs) were obtained by stimulating CD4+CD25+ cells from C57BL/6 mice (H-2b) with allogeneic DCs from BALB/c mice (H-2d). To generate Tregs that indirectly recognized allogeneic MHC class II molecules, dTregs were retrovirally transduced with TCR genes conferring specificity for H-2Kd presented by H-2Ab MHC class II molecules. The dual direct and indirect allospecificity of the TCR-transduced Tregs was confirmed in vitro. In mice, TCR-transduced Tregs, but not dTregs, induced long-term survival of partially MHC-mismatched heart grafts when combined with short-term adjunctive immunosuppression. Further, although dTregs were only slightly less effective than TCR-transduced Tregs at inducing long-term survival of fully MHC-mismatched heart grafts, histologic analysis of long-surviving hearts demonstrated marked superiority of the TCR-transduced Tregs. Thus, Tregs specific for allogeneic MHC class II molecules are effective in promoting transplantation tolerance in mice, which suggests that such cells have clinical potential.

Authors

Julia Yuen-Shan Tsang, Yakup Tanriver, Shuiping Jiang, Shao-An Xue, Kulachelvy Ratnasothy, Daxin Chen, Hans J. Stauss, R. Pat Bucy, Giovanna Lombardi, Robert Lechler

×

Calsarcin-2 deficiency increases exercise capacity in mice through calcineurin/NFAT activation
Norbert Frey, Derk Frank, Stefanie Lippl, Christian Kuhn, Harald Kögler, Tomasa Barrientos, Claudia Rohr, Rainer Will, Oliver J. Müller, Hartmut Weiler, Rhonda Bassel-Duby, Hugo A. Katus, Eric N. Olson
Norbert Frey, Derk Frank, Stefanie Lippl, Christian Kuhn, Harald Kögler, Tomasa Barrientos, Claudia Rohr, Rainer Will, Oliver J. Müller, Hartmut Weiler, Rhonda Bassel-Duby, Hugo A. Katus, Eric N. Olson
View: Text | PDF

Calsarcin-2 deficiency increases exercise capacity in mice through calcineurin/NFAT activation

  • Text
  • PDF
Abstract

The composition of skeletal muscle, in terms of the relative number of slow- and fast-twitch fibers, is tightly regulated to enable an organism to respond and adapt to changing physical demands. The phosphatase calcineurin and its downstream targets, transcription factors of the nuclear factor of activated T cells (NFAT) family, play a critical role in this process by promoting the formation of slow-twitch, oxidative fibers. Calcineurin binds to calsarcins, a family of striated muscle–specific proteins of the sarcomeric Z-disc. We show here that mice deficient in calsarcin-2, which is expressed exclusively by fast-twitch muscle and encoded by the myozenin 1 (Myoz1) gene, have substantially reduced body weight and fast-twitch muscle mass in the absence of an overt myopathic phenotype. Additionally, Myoz1 KO mice displayed markedly improved performance and enhanced running distances in exercise studies. Analysis of fiber type composition of calsarcin-2–deficient skeletal muscles showed a switch toward slow-twitch, oxidative fibers. Reporter assays in cultured myoblasts indicated an inhibitory role for calsarcin-2 on calcineurin, and Myoz1 KO mice exhibited both an excess of NFAT activity and an increase in expression of regulator of calcineurin 1-4 (RCAN1-4), indicating enhanced calcineurin signaling in vivo. Taken together, these results suggest that calsarcin-2 modulates exercise performance in vivo through regulation of calcineurin/NFAT activity and subsequent alteration of the fiber type composition of skeletal muscle.

Authors

Norbert Frey, Derk Frank, Stefanie Lippl, Christian Kuhn, Harald Kögler, Tomasa Barrientos, Claudia Rohr, Rainer Will, Oliver J. Müller, Hartmut Weiler, Rhonda Bassel-Duby, Hugo A. Katus, Eric N. Olson

×

NFATc1 in mice represses osteoprotegerin during osteoclastogenesis and dissociates systemic osteopenia from inflammation in cherubism
Antonios O. Aliprantis, Yasuyoshi Ueki, Rosalyn Sulyanto, Arnold Park, Kirsten S. Sigrist, Sudarshana M. Sharma, Michael C. Ostrowski, Bjorn R. Olsen, Laurie H. Glimcher
Antonios O. Aliprantis, Yasuyoshi Ueki, Rosalyn Sulyanto, Arnold Park, Kirsten S. Sigrist, Sudarshana M. Sharma, Michael C. Ostrowski, Bjorn R. Olsen, Laurie H. Glimcher
View: Text | PDF

NFATc1 in mice represses osteoprotegerin during osteoclastogenesis and dissociates systemic osteopenia from inflammation in cherubism

  • Text
  • PDF
Abstract

Osteoporosis results from an imbalance in skeletal remodeling that favors bone resorption over bone formation. Bone matrix is degraded by osteoclasts, which differentiate from myeloid precursors in response to the cytokine RANKL. To gain insight into the transcriptional regulation of bone resorption during growth and disease, we generated a conditional knockout of the transcription factor nuclear factor of activated T cells c1 (Nfatc1). Deletion of Nfatc1 in young mice resulted in osteopetrosis and inhibition of osteoclastogenesis in vivo and in vitro. Transcriptional profiling revealed NFATc1 as a master regulator of the osteoclast transcriptome, promoting the expression of numerous genes needed for bone resorption. In addition, NFATc1 directly repressed osteoclast progenitor expression of osteoprotegerin, a decoy receptor for RANKL previously thought to be an osteoblast-derived inhibitor of bone resorption. “Cherubism mice”, which carry a gain-of-function mutation in SH3-domain binding protein 2 (Sh3bp2), develop osteoporosis and widespread inflammation dependent on the proinflammatory cytokine, TNF-α. Interestingly, deletion of Nfatc1 protected cherubism mice from systemic bone loss but did not inhibit inflammation. Taken together, our study demonstrates that NFATc1 is required for remodeling of the growing and adult skeleton and suggests that NFATc1 may be an effective therapeutic target for osteoporosis associated with inflammatory states.

Authors

Antonios O. Aliprantis, Yasuyoshi Ueki, Rosalyn Sulyanto, Arnold Park, Kirsten S. Sigrist, Sudarshana M. Sharma, Michael C. Ostrowski, Bjorn R. Olsen, Laurie H. Glimcher

×

Constitutively active Akt1 expression in mouse pancreas requires S6 kinase 1 for insulinoma formation
Samira Alliouachene, Robyn L. Tuttle, Stephanie Boumard, Thomas Lapointe, Sophie Berissi, Stephane Germain, Francis Jaubert, David Tosh, Morris J. Birnbaum, Mario Pende
Samira Alliouachene, Robyn L. Tuttle, Stephanie Boumard, Thomas Lapointe, Sophie Berissi, Stephane Germain, Francis Jaubert, David Tosh, Morris J. Birnbaum, Mario Pende
View: Text | PDF

Constitutively active Akt1 expression in mouse pancreas requires S6 kinase 1 for insulinoma formation

  • Text
  • PDF
Abstract

Factors that promote pancreatic β cell growth and function are potential therapeutic targets for diabetes mellitus. In mice, genetic experiments suggest that signaling cascades initiated by insulin and IGFs positively regulate β cell mass and insulin secretion. Akt and S6 kinase (S6K) family members are activated as part of these signaling cascades, but how the interplay between these proteins controls β cell growth and function has not been determined. Here, we found that although transgenic mice overexpressing the constitutively active form of Akt1 under the rat insulin promoter (RIP-MyrAkt1 mice) had enlarged β cells and high plasma insulin levels, leading to improved glucose tolerance, a substantial proportion of the mice developed insulinomas later in life, which caused decreased viability. This oncogenic transformation tightly correlated with nuclear exclusion of the tumor suppressor PTEN. To address the role of the mammalian target of rapamycin (mTOR) substrate S6K1 in the MyrAkt1-mediated phenotype, we crossed RIP-MyrAkt1 and S6K1-deficient mice. The resulting mice displayed reduced insulinemia and glycemia compared with RIP-MyrAkt1 mice due to a combined effect of improved insulin secretion and insulin sensitivity. Importantly, although the increase in β cell size in RIP-MyrAkt1 mice was not affected by S6K1 deficiency, the hyperplastic transformation required S6K1. Our results therefore identify S6K1 as a critical element for MyrAkt1-induced tumor formation and suggest that it may represent a useful target for anticancer therapy downstream of mTOR.

Authors

Samira Alliouachene, Robyn L. Tuttle, Stephanie Boumard, Thomas Lapointe, Sophie Berissi, Stephane Germain, Francis Jaubert, David Tosh, Morris J. Birnbaum, Mario Pende

×

PTEN posttranslational inactivation and hyperactivation of the PI3K/Akt pathway sustain primary T cell leukemia viability
Ana Silva, J. Andrés Yunes, Bruno A. Cardoso, Leila R. Martins, Patrícia Y. Jotta, Miguel Abecasis, Alexandre E. Nowill, Nick R. Leslie, Angelo A. Cardoso, Joao T. Barata
Ana Silva, J. Andrés Yunes, Bruno A. Cardoso, Leila R. Martins, Patrícia Y. Jotta, Miguel Abecasis, Alexandre E. Nowill, Nick R. Leslie, Angelo A. Cardoso, Joao T. Barata
View: Text | PDF

PTEN posttranslational inactivation and hyperactivation of the PI3K/Akt pathway sustain primary T cell leukemia viability

  • Text
  • PDF
Abstract

Mutations in the phosphatase and tensin homolog (PTEN) gene leading to PTEN protein deletion and subsequent activation of the PI3K/Akt signaling pathway are common in cancer. Here we show that PTEN inactivation in human T cell acute lymphoblastic leukemia (T-ALL) cells is not always synonymous with PTEN gene lesions and diminished protein expression. Samples taken from patients with T-ALL at the time of diagnosis very frequently showed constitutive hyperactivation of the PI3K/Akt pathway. In contrast to immortalized cell lines, most primary T-ALL cells did not harbor PTEN gene alterations, displayed normal PTEN mRNA levels, and expressed higher PTEN protein levels than normal T cell precursors. However, PTEN overexpression was associated with decreased PTEN lipid phosphatase activity, resulting from casein kinase 2 (CK2) overexpression and hyperactivation. In addition, T-ALL cells had constitutively high levels of ROS, which can also downmodulate PTEN activity. Accordingly, both CK2 inhibitors and ROS scavengers restored PTEN activity and impaired PI3K/Akt signaling in T-ALL cells. Strikingly, inhibition of PI3K and/or CK2 promoted T-ALL cell death without affecting normal T cell precursors. Overall, our data indicate that T-ALL cells inactivate PTEN mostly in a nondeletional, posttranslational manner. Pharmacological manipulation of these mechanisms may open new avenues for T-ALL treatment.

Authors

Ana Silva, J. Andrés Yunes, Bruno A. Cardoso, Leila R. Martins, Patrícia Y. Jotta, Miguel Abecasis, Alexandre E. Nowill, Nick R. Leslie, Angelo A. Cardoso, Joao T. Barata

×

CD4+CD25+ Tregs control the TRAIL-dependent cytotoxicity of tumor-infiltrating DCs in rodent models of colon cancer
Stephan Roux, Lionel Apetoh, Fanny Chalmin, Sylvain Ladoire, Grégoire Mignot, Pierre-Emmanuel Puig, Gregoire Lauvau, Laurence Zitvogel, François Martin, Bruno Chauffert, Hideo Yagita, Eric Solary, François Ghiringhelli
Stephan Roux, Lionel Apetoh, Fanny Chalmin, Sylvain Ladoire, Grégoire Mignot, Pierre-Emmanuel Puig, Gregoire Lauvau, Laurence Zitvogel, François Martin, Bruno Chauffert, Hideo Yagita, Eric Solary, François Ghiringhelli
View: Text | PDF

CD4+CD25+ Tregs control the TRAIL-dependent cytotoxicity of tumor-infiltrating DCs in rodent models of colon cancer

  • Text
  • PDF
Abstract

Tumors that progress do so via their ability to escape the antitumor immune response through several mechanisms, including developing ways to induce the differentiation and/or recruitment of CD4+CD25+ Tregs. The Tregs, in turn, inhibit the cytotoxic function of T cells and NK cells, but whether they have an effect on the cytotoxic function of tumor-infiltrating DCs (TIDCs) has not been determined. Here we have shown, in 2 rodent models of colon cancer, that CD4+CD25+ Tregs inhibit the ability of CD11b+ TIDCs to mediate TNF-related apoptosis-inducing ligand–induced (TRAIL-induced) tumor cell death. In both models of cancer, combination treatment with Mycobacterium bovis Bacillus Calmette-Guérin (BCG), which activates the innate immune system via TLR2, TLR4, and TLR9, and cyclophosphamide (CTX), which depletes Tregs, eradicated the tumors. Further analysis revealed that the treatment led to a marked increase in the number of CD11b+ TIDCs that killed the tumor cells via a TRAIL-dependent mechanism. Furthermore, acquisition of TRAIL expression by the CD11b+ TIDCs was induced by BCG and dependent on signaling through TLR2, TLR4, and TLR9. In vivo transfer of Tregs abrogated the ability of BCG to induce CD11b+ TIDCs to express TRAIL and thereby nullified the efficacy of the CTX-BCG treatment. Our data have therefore delineated what we believe to be a novel mechanism by which Tregs inhibit the antitumor immune response.

Authors

Stephan Roux, Lionel Apetoh, Fanny Chalmin, Sylvain Ladoire, Grégoire Mignot, Pierre-Emmanuel Puig, Gregoire Lauvau, Laurence Zitvogel, François Martin, Bruno Chauffert, Hideo Yagita, Eric Solary, François Ghiringhelli

×

Maintenance of cardiac energy metabolism by histone deacetylase 3 in mice
Rusty L. Montgomery, Matthew J. Potthoff, Michael Haberland, Xiaoxia Qi, Satoshi Matsuzaki, Kenneth M. Humphries, James A. Richardson, Rhonda Bassel-Duby, Eric N. Olson
Rusty L. Montgomery, Matthew J. Potthoff, Michael Haberland, Xiaoxia Qi, Satoshi Matsuzaki, Kenneth M. Humphries, James A. Richardson, Rhonda Bassel-Duby, Eric N. Olson
View: Text | PDF

Maintenance of cardiac energy metabolism by histone deacetylase 3 in mice

  • Text
  • PDF
Abstract

Histone deacetylase (HDAC) inhibitors show remarkable therapeutic potential for a variety of disorders, including cancer, neurological disease, and cardiac hypertrophy. However, the specific HDAC isoforms that mediate their actions are unclear, as are the physiological and pathological functions of individual HDACs in vivo. To explore the role of Hdac3 in the heart, we generated mice with a conditional Hdac3 null allele. Although global deletion of Hdac3 resulted in lethality by E9.5, mice with a cardiac-specific deletion of Hdac3 survived until 3–4 months of age. At this time, they showed massive cardiac hypertrophy and upregulation of genes associated with fatty acid uptake, fatty acid oxidation, and electron transport/oxidative phosphorylation accompanied by fatty acid–induced myocardial lipid accumulation and elevated triglyceride levels. These abnormalities in cardiac metabolism can be attributed to excessive activity of the nuclear receptor PPARα. The phenotype associated with cardiac-specific Hdac3 gene deletion differs from that of all other Hdac gene mutations. These findings reveal a unique role for Hdac3 in maintenance of cardiac function and regulation of myocardial energy metabolism.

Authors

Rusty L. Montgomery, Matthew J. Potthoff, Michael Haberland, Xiaoxia Qi, Satoshi Matsuzaki, Kenneth M. Humphries, James A. Richardson, Rhonda Bassel-Duby, Eric N. Olson

×
  • ← Previous
  • 1
  • 2
  • …
  • 538
  • 539
  • 540
  • …
  • 2575
  • 2576
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts