Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Maintenance of cardiac energy metabolism by histone deacetylase 3 in mice
Rusty L. Montgomery, … , Rhonda Bassel-Duby, Eric N. Olson
Rusty L. Montgomery, … , Rhonda Bassel-Duby, Eric N. Olson
Published October 1, 2008
Citation Information: J Clin Invest. 2008;118(11):3588-3597. https://doi.org/10.1172/JCI35847.
View: Text | PDF
Research Article

Maintenance of cardiac energy metabolism by histone deacetylase 3 in mice

  • Text
  • PDF
Abstract

Histone deacetylase (HDAC) inhibitors show remarkable therapeutic potential for a variety of disorders, including cancer, neurological disease, and cardiac hypertrophy. However, the specific HDAC isoforms that mediate their actions are unclear, as are the physiological and pathological functions of individual HDACs in vivo. To explore the role of Hdac3 in the heart, we generated mice with a conditional Hdac3 null allele. Although global deletion of Hdac3 resulted in lethality by E9.5, mice with a cardiac-specific deletion of Hdac3 survived until 3–4 months of age. At this time, they showed massive cardiac hypertrophy and upregulation of genes associated with fatty acid uptake, fatty acid oxidation, and electron transport/oxidative phosphorylation accompanied by fatty acid–induced myocardial lipid accumulation and elevated triglyceride levels. These abnormalities in cardiac metabolism can be attributed to excessive activity of the nuclear receptor PPARα. The phenotype associated with cardiac-specific Hdac3 gene deletion differs from that of all other Hdac gene mutations. These findings reveal a unique role for Hdac3 in maintenance of cardiac function and regulation of myocardial energy metabolism.

Authors

Rusty L. Montgomery, Matthew J. Potthoff, Michael Haberland, Xiaoxia Qi, Satoshi Matsuzaki, Kenneth M. Humphries, James A. Richardson, Rhonda Bassel-Duby, Eric N. Olson

×

Figure 1

Generation of a conditional Hdac3 allele.

Options: View larger image (or click on image) Download as PowerPoint
Generation of a conditional Hdac3 allele.
   
(A) Strategy to generate a...
(A) Strategy to generate a conditional Hdac3 allele. Protein, genomic structure, targeting vector, and targeted allele are shown. loxP sites were inserted upstream of exon 11 and downstream of exon 14. The neomycin cassette was removed by crossing to FLPe transgenic mice. Cre-mediated excision leaves 1 loxP site in place of exons 11 through 14. NES, nuclear export sequence; NLS, nuclear localization sequence; FRT, flipase recognition target; dta, diphtheria toxin A. (B) Representative Southern blot of genomic DNA to show germ-line transmission. WT (~13.8 kb) and targeted (~6.6 kb) bands are indicated. (C) Genotyping of Hdac3 conditional mice by genomic PCR. Primer triplex includes 1 set flanking the 5′ loxP site and a third primer downstream of the 3′ loxP site. Global deletion by CAG-Cre removes the primer within the loxP sites, resulting in 1 fragment of approximately 650 bp. Primers are shown in A.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts