Sepsis-associated acute kidney injury (AKI) is a common and morbid condition that is distinguishable from typical ischemic renal injury by its paucity of tubular cell death. The mechanisms underlying renal dysfunction in individuals with sepsis-associated AKI are therefore less clear. Here we have shown that endotoxemia reduces oxygen delivery to the kidney, without changing tissue oxygen levels, suggesting reduced oxygen consumption by the kidney cells. Tubular mitochondria were swollen, and their function was impaired. Expression profiling showed that oxidative phosphorylation genes were selectively suppressed during sepsis-associated AKI and reactivated when global function was normalized. PPARγ coactivator–1α (PGC-1α), a major regulator of mitochondrial biogenesis and metabolism, not only followed this pattern but was proportionally suppressed with the degree of renal impairment. Furthermore, tubular cells had reduced PGC-1α expression and oxygen consumption in response to TNF-α; however, excess PGC-1α reversed the latter effect. Both global and tubule-specific PGC-1α–knockout mice had normal basal renal function but suffered persistent injury following endotoxemia. Our results demonstrate what we believe to be a novel mechanism for sepsis-associated AKI and suggest that PGC-1α induction may be necessary for recovery from this disorder, identifying a potential new target for future therapeutic studies.
Mei Tran, Denise Tam, Amit Bardia, Manoj Bhasin, Glenn C. Rowe, Ajay Kher, Zsuzsanna K. Zsengeller, M. Reza Akhavan-Sharif, Eliyahu V. Khankin, Magali Saintgeniez, Sascha David, Deborah Burstein, S. Ananth Karumanchi, Isaac E. Stillman, Zoltan Arany, Samir M. Parikh
Proteasomes are multisubunit proteases that play a critical role in maintaining cellular function through the selective degradation of ubiquitinated proteins. When 3 additional β subunits, expression of which is induced by IFN-γ, are substituted for their constitutively expressed counterparts, the structure is converted to an immunoproteasome. However, the underlying roles of immunoproteasomes in human diseases are poorly understood. Using exome analysis, we found a homozygous missense mutation (G197V) in immunoproteasome subunit, β type 8 (PSMB8), which encodes one of the β subunits induced by IFN-γ in patients from 2 consanguineous families. Patients bearing this mutation suffered from autoinflammatory responses that included recurrent fever and nodular erythema together with lipodystrophy. This mutation increased assembly intermediates of immunoproteasomes, resulting in decreased proteasome function and ubiquitin-coupled protein accumulation in the patient’s tissues. In the patient’s skin and B cells, IL-6 was highly expressed, and there was reduced expression of PSMB8. Downregulation of PSMB8 inhibited the differentiation of murine and human adipocytes in vitro, and injection of siRNA against Psmb8 in mouse skin reduced adipocyte tissue volume. These findings identify PSMB8 as an essential component and regulator not only of inflammation, but also of adipocyte differentiation, and indicate that immunoproteasomes have pleiotropic functions in maintaining the homeostasis of a variety of cell types.
Akiko Kitamura, Yoichi Maekawa, Hisanori Uehara, Keisuke Izumi, Izumi Kawachi, Masatoyo Nishizawa, Yasuko Toyoshima, Hitoshi Takahashi, Daron M. Standley, Keiji Tanaka, Jun Hamazaki, Shigeo Murata, Koji Obara, Itaru Toyoshima, Koji Yasutomo
Antiviral Abs, for example those produced in response to influenza virus infection, are critical for virus neutralization and defense against secondary infection. While the half-life of Abs is short, Ab titers can last a lifetime due to a subset of the Ab-secreting cells (ASCs) that is long lived. However, the mechanisms governing ASC longevity are poorly understood. Here, we have identified a critical role for extrinsic cytokine signals in the survival of respiratory tract ASCs in a mouse model of influenza infection. Irradiation of mice at various time points after influenza virus infection markedly diminished numbers of lung ASCs, suggesting that they are short-lived and require extrinsic factors in order to persist. Neutralization of the TNF superfamily cytokines B lymphocyte stimulator (BLyS; also known as BAFF) and a proliferation-inducing ligand (APRIL) reduced numbers of antiviral ASCs in the lungs and bone marrow, whereas ASCs in the spleen and lung-draining lymph node were surprisingly unaffected. Mice deficient in transmembrane activator and calcium-modulator and cyclophilin ligand interactor (TACI), a receptor for BLyS and APRIL, mounted an initial antiviral B cell response similar to that generated in WT mice but failed to sustain protective Ab titers in the airways and serum, leading to increased susceptibility to secondary viral challenge. These studies highlight the importance of TACI signaling for the maintenance of ASCs and protection against influenza virus infection.
Amaya I. Wolf, Krystyna Mozdzanowska, William J. Quinn III, Michele Metzgar, Katie L. Williams, Andrew J. Caton, Eric Meffre, Richard J. Bram, Loren D. Erickson, David Allman, Michael P. Cancro, Jan Erikson
Intestinal enteroendocrine cells are critical to central regulation of caloric consumption, since they activate hypothalamic circuits that decrease appetite and thereby restrict meal size by secreting hormones in response to nutrients in the gut. Although guanylyl cyclase and downstream cGMP are essential regulators of centrally regulated feeding behavior in invertebrates, the role of this primordial signaling mechanism in mammalian appetite regulation has eluded definition. In intestinal epithelial cells, guanylyl cyclase 2C (GUCY2C) is a transmembrane receptor that makes cGMP in response to the paracrine hormones guanylin and uroguanylin, which regulate epithelial cell dynamics along the crypt-villus axis. Here, we show that silencing of GUCY2C in mice disrupts satiation, resulting in hyperphagia and subsequent obesity and metabolic syndrome. This defined an appetite-regulating uroguanylin-GUCY2C endocrine axis, which we confirmed by showing that nutrient intake induces intestinal prouroguanylin secretion into the circulation. The prohormone signal is selectively decoded in the hypothalamus by proteolytic liberation of uroguanylin, inducing GUCY2C signaling and consequent activation of downstream anorexigenic pathways. Thus, evolutionary diversification of primitive guanylyl cyclase signaling pathways allows GUCY2C to coordinate endocrine regulation of central food acquisition pathways with paracrine control of intestinal homeostasis. Moreover, the uroguanylin-GUCY2C endocrine axis may provide a therapeutic target to control appetite, obesity, and metabolic syndrome.
Michael A. Valentino, Jieru E. Lin, Adam E. Snook, Peng Li, Gilbert W. Kim, Glen Marszalowicz, Michael S. Magee, Terry Hyslop, Stephanie Schulz, Scott A. Waldman
It is unclear whether neurogenesis occurs in the adult mammalian enteric nervous system (ENS). Neural crest–derived cells capable of forming multilineage colonies in culture, and neurons and glia upon transplantation into chick embryos, persist throughout adult life in the mammalian ENS. In this study we sought to determine the physiological function of these cells. We discovered that these cells could be identified based on CD49b expression and that they had characteristics of enteric glia, including p75, GFAP, S100B, and SOX10 expression. To test whether new neurons or glia arise in the adult gut under physiological conditions, we marked dividing progenitors with a thymidine analog in rodents under steady-state conditions, or during aging, pregnancy, dietary changes, hyperglycemia, or exercise. We also tested gut injuries including inflammation, irradiation, benzalkonium chloride treatment, partial gut stenosis, and glial ablation. We readily observed neurogenesis in a neurogenic region of the central nervous system, but not reproducibly in the adult ENS. Lineage tracing of glial cells with GFAP-Cre and GFAP-CreERT2 also detected little or no adult ENS neurogenesis. Neurogenesis in the adult gut is therefore very limited under the conditions we studied. In contrast, ENS gliogenesis was readily observed under steady-state conditions and after injury. Adult enteric glia thus have the potential to form neurons and glia in culture but are fated to form mainly glia under physiological conditions and after the injuries we studied.
Nancy M. Joseph, Shenghui He, Elsa Quintana, Yun-Gi Kim, Gabriel Núñez, Sean J. Morrison
In rodents, acute brain insulin action reduces blood glucose levels by suppressing the expression of enzymes in the hepatic gluconeogenic pathway, thereby reducing gluconeogenesis and endogenous glucose production (EGP). Whether a similar mechanism is functional in large animals, including humans, is unknown. Here, we demonstrated that in canines, physiologic brain hyperinsulinemia brought about by infusion of insulin into the head arteries (during a pancreatic clamp to maintain basal hepatic insulin and glucagon levels) activated hypothalamic Akt, altered STAT3 signaling in the liver, and suppressed hepatic gluconeogenic gene expression without altering EGP or gluconeogenesis. Rather, brain hyperinsulinemia slowly caused a modest reduction in net hepatic glucose output (NHGO) that was attributable to increased net hepatic glucose uptake and glycogen synthesis. This was associated with decreased levels of glycogen synthase kinase 3β (GSK3β) protein and mRNA and with decreased glycogen synthase phosphorylation, changes that were blocked by hypothalamic PI3K inhibition. Therefore, we conclude that the canine brain senses physiologic elevations in plasma insulin, and that this in turn regulates genetic events in the liver. In the context of basal insulin and glucagon levels at the liver, this input augments hepatic glucose uptake and glycogen synthesis, reducing NHGO without altering EGP.
Christopher J. Ramnanan, Viswanathan Saraswathi, Marta S. Smith, E. Patrick Donahue, Ben Farmer, Tiffany D. Farmer, Doss Neal, Philip E. Williams, Margaret Lautz, Andrea Mari, Alan D. Cherrington, Dale S. Edgerton
Spermatogonial stem cells (SSCs) capable of self-renewal and differentiation are the foundation for spermatogenesis. Although several factors important for these processes have been identified, the fundamental mechanisms regulating SSC self-renewal and differentiation remain unknown. Here, we investigated a role for the Foxo transcription factors in mouse spermatogenesis and found that Foxo1 specifically marks mouse gonocytes and a subset of spermatogonia with stem cell potential. Genetic analyses showed that Foxo1 was required for both SSC homeostasis and the initiation of spermatogenesis. Combined deficiency of Foxo1, Foxo3, and Foxo4 resulted in a severe impairment of SSC self-renewal and a complete block of differentiation, indicating that Foxo3 and Foxo4, although dispensable for male fertility, contribute to SSC function. By conditional inactivation of 3-phosphoinositide–dependent protein kinase 1 (Pdk1) and phosphatase and tensin homolog (Pten) in the male germ line, we found that PI3K signaling regulates Foxo1 stability and subcellular localization, revealing that the Foxos are pivotal effectors of PI3K-Akt signaling in SSCs. We also identified a network of Foxo gene targets — most notably Ret — that rationalized the maintenance of SSCs by the Foxos. These studies demonstrate that Foxo1 expression in the spermatogenic lineage is intimately associated with the stem cell state and revealed what we believe to be novel Foxo-dependent mechanisms underlying SSC self-renewal and differentiation, with implications for common diseases, including male infertility and testicular cancer, due to abnormalities in SSC function.
Meredith J. Goertz, Zhuoru Wu, Teresa D. Gallardo, F. Kent Hamra, Diego H. Castrillon
It has long been hypothesized that abnormalities in lipid biology contribute to degenerative brain diseases. Consistent with this, emerging epidemiologic evidence links lipid alterations with Parkinson disease (PD), and disruption of lipid metabolism has been found to predispose to α-synuclein toxicity. We therefore investigated whether Parkin, an E3 ubiquitin ligase found to be defective in patients with early onset PD, regulates systemic lipid metabolism. We perturbed lipid levels by exposing Parkin+/+ and Parkin–/– mice to a high-fat and -cholesterol diet (HFD). Parkin–/– mice resisted weight gain, steatohepatitis, and insulin resistance. In wild-type mice, the HFD markedly increased hepatic Parkin levels in parallel with lipid transport proteins, including CD36, Sr-B1, and FABP. These lipid transport proteins were not induced in Parkin–/– mice. The role of Parkin in fat uptake was confirmed by increased oleate accumulation in hepatocytes overexpressing Parkin and decreased uptake in Parkin–/– mouse embryonic fibroblasts and patient cells harboring complex heterozygous mutations in the Parkin-encoding gene PARK2. Parkin conferred this effect, in part, via ubiquitin-mediated stabilization of the lipid transporter CD36. Reconstitution of Parkin restored hepatic fat uptake and CD36 levels in Parkin–/– mice, and Parkin augmented fat accumulation during adipocyte differentiation. These results demonstrate that Parkin is regulated in a lipid-dependent manner and modulates systemic fat uptake via ubiquitin ligase–dependent effects. Whether this metabolic regulation contributes to premature Parkinsonism warrants investigation.
Kye-Young Kim, Mark V. Stevens, M. Hasina Akter, Sarah E. Rusk, Robert J. Huang, Alexandra Cohen, Audrey Noguchi, Danielle Springer, Alexander V. Bocharov, Tomas L. Eggerman, Der-Fen Suen, Richard J. Youle, Marcelo Amar, Alan T. Remaley, Michael N. Sack
The enteric nervous system (ENS) in mammals forms from neural crest cells during embryogenesis and early postnatal life. Nevertheless, multipotent progenitors of the ENS can be identified in the adult intestine using clonal cultures and in vivo transplantation assays. The identity of these neurogenic precursors in the adult gut and their relationship to the embryonic progenitors of the ENS are currently unknown. Using genetic fate mapping, we here demonstrate that mouse neural crest cells marked by SRY box–containing gene 10 (Sox10) generate the neuronal and glial lineages of enteric ganglia. Most neurons originated from progenitors residing in the gut during mid-gestation. Afterward, enteric neurogenesis was reduced, and it ceased between 1 and 3 months of postnatal life. Sox10-expressing cells present in the myenteric plexus of adult mice expressed glial markers, and we found no evidence that these cells participated in neurogenesis under steady-state conditions. However, they retained neurogenic potential, as they were capable of generating neurons with characteristics of enteric neurons in culture. Furthermore, enteric glia gave rise to neurons in vivo in response to chemical injury to the enteric ganglia. Our results indicate that despite the absence of constitutive neurogenesis in the adult gut, enteric glia maintain limited neurogenic potential, which can be activated by tissue dissociation or injury.
Catia Laranjeira, Katarina Sandgren, Nicoletta Kessaris, William Richardson, Alexandre Potocnik, Pieter Vanden Berghe, Vassilis Pachnis
Streptococcus pneumoniae colonizes the mucosal surface of the human upper respiratory tract. A colonization event is gradually cleared through phagocytosis by monocytes/macrophages that are recruited to the airway lumen. Here, we sought to define the bacterial and host factors that promote monocyte/macrophage influx and S. pneumoniae clearance using intranasal bacterial challenge in mice. We found that the recruitment of monocytes/macrophages required their expression of the chemokine receptor CCR2 and correlated with expression of the CCR2 ligand CCL2. Production of CCL2 and monocyte/macrophage recruitment were deficient in mice lacking digestion of peptidoglycan by lysozyme (LysM) and cytosolic sensing of the products of digestion by Nod2. Ex vivo macrophages produced CCL2 following bacterial uptake, digestion by LysM, and sensing of peptidoglycan by Nod2. Sensing of digested peptidoglycan by Nod2 also required the pore-forming toxin pneumolysin. The generation of an adaptive immune response, as measured by anti-pneumococcal antibody titers, was also LysM- and Nod2-dependent. Together, our data suggest that bacterial uptake by professional phagocytes is followed by LysM-mediated digestion of S. pneumoniae–derived peptidoglycan, sensing of the resulting products by Nod2, release of the chemokine CCL2, and CCR2-dependent recruitment of the additional monocytes/macrophages required for the clearance of an S. pneumoniae colonization event.
Kimberly M. Davis, Shigeki Nakamura, Jeffrey N. Weiser
No posts were found with this tag.