Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact

Research Article

  • 24,025 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • 3
  • 4
  • …
  • 2402
  • 2403
  • Next →
Graft-versus-host disease depletes plasmacytoid dendritic cell progenitors to impair tolerance induction
Yuanyuan Tian, … , Shaoyan Hu, Yi Zhang
Yuanyuan Tian, … , Shaoyan Hu, Yi Zhang
Published October 22, 2020
Citation Information: J Clin Invest. 2021;131(1):e136774. https://doi.org/10.1172/JCI136774.
View: Text | PDF

Graft-versus-host disease depletes plasmacytoid dendritic cell progenitors to impair tolerance induction

  • Text
  • PDF
Abstract

Graft-versus-host disease (GVHD) causes failed reconstitution of donor plasmacytoid dendritic cells (pDCs) that are critical for immune protection and tolerance. We used both murine and human systems to uncover the mechanisms whereby GVHD induces donor pDC defects. GVHD depleted Flt3-expressing donor multipotent progenitors (MPPs) that sustained pDCs, leading to impaired generation of pDCs. MPP loss was associated with decreased amounts of MPP-producing hematopoietic stem cells (HSCs) and oxidative stress–induced death of proliferating MPPs. Additionally, alloreactive T cells produced GM-CSF to inhibit MPP expression of Tcf4, the transcription factor essential for pDC development, subverting MPP production of pDCs. GM-CSF did not affect the maturation of pDC precursors. Notably, enhanced recovery of donor pDCs upon adoptive transfer early after allogeneic HSC transplantation repressed GVHD and restored the de novo generation of donor pDCs in recipient mice. pDCs suppressed the proliferation and expansion of activated autologous T cells via a type I IFN signaling–dependent mechanism. They also produced PD-L1 and LILRB4 to inhibit T cell production of IFN-γ. We thus demonstrate that GVHD impairs the reconstitution of tolerogenic donor pDCs by depleting DC progenitors rather than by preventing pDC maturation. MPPs are an important target to effectively bolster pDC reconstitution for controlling GVHD.

Authors

Yuanyuan Tian, Lijun Meng, Ying Wang, Bohan Li, Hongshuang Yu, Yan Zhou, Tien Bui, Ciril Abraham, Alicia Li, Yongping Zhang, Jian Wang, Chenchen Zhao, Shin Mineishi, Stefania Gallucci, David Porter, Elizabeth Hexner, Hong Zheng, Yanyun Zhang, Shaoyan Hu, Yi Zhang

×

CLIC1 recruits PIP5K1A/C to induce cell-matrix adhesions for tumor metastasis
Jei-Ming Peng, … , Ming-Chin Yu, Sen-Yung Hsieh
Jei-Ming Peng, … , Ming-Chin Yu, Sen-Yung Hsieh
Published October 20, 2020
Citation Information: J Clin Invest. 2021;131(1):e133525. https://doi.org/10.1172/JCI133525.
View: Text | PDF

CLIC1 recruits PIP5K1A/C to induce cell-matrix adhesions for tumor metastasis

  • Text
  • PDF
Abstract

Membrane protrusion and adhesion to the extracellular matrix, which involves the extension of actin filaments and formation of adhesion complexes, are the fundamental processes for cell migration, tumor invasion, and metastasis. How cancer cells efficiently coordinate these processes remains unclear. Here, we showed that membrane-targeted chloride intracellular channel 1 (CLIC1) spatiotemporally regulates the formation of cell-matrix adhesions and membrane protrusions through the recruitment of PIP5Ks to the plasma membrane. Comparative proteomics identified CLIC1 upregulated in human hepatocellular carcinoma (HCC) and associated with tumor invasiveness, metastasis, and poor prognosis. In response to migration-related stimuli, CLIC1 recruited PIP5K1A and PIP5K1C from the cytoplasm to the leading edge of the plasma membrane, where PIP5Ks generate a phosphatidylinositol 4,5-bisphosphate–rich (PIP2-rich) microdomain to induce the formation of integrin-mediated cell-matrix adhesions and the signaling for cytoskeleon extension. CLIC1 silencing inhibited the attachment of tumor cells to culture plates and the adherence and extravasation in the lung alveoli, resulting in suppressed lung metastasis in mice. This study reveals what we believe is an unrecognized mechanism that spatiotemporally coordinates the formation of both lamellipodium/invadopodia and nascent cell-matrix adhesions for directional migration and tumor invasion/metastasis. The unique traits of upregulation and membrane targeting of CLIC1 in cancer cells make it an excellent therapeutic target for tumor metastasis.

Authors

Jei-Ming Peng, Sheng-Hsuan Lin, Ming-Chin Yu, Sen-Yung Hsieh

×

TLR3 controls constitutive IFN-β antiviral immunity in human fibroblasts and cortical neurons
Daxing Gao, … , Jean-Laurent Casanova, Shen-Ying Zhang
Daxing Gao, … , Jean-Laurent Casanova, Shen-Ying Zhang
Published November 18, 2020
Citation Information: J Clin Invest. 2021;131(1):e134529. https://doi.org/10.1172/JCI134529.
View: Text | PDF

TLR3 controls constitutive IFN-β antiviral immunity in human fibroblasts and cortical neurons

  • Text
  • PDF
Abstract

Human herpes simplex virus 1 (HSV-1) encephalitis can be caused by inborn errors of the TLR3 pathway, resulting in impairment of CNS cell-intrinsic antiviral immunity. Deficiencies of the TLR3 pathway impair cell-intrinsic immunity to vesicular stomatitis virus (VSV) and HSV-1 in fibroblasts, and to HSV-1 in cortical but not trigeminal neurons. The underlying molecular mechanism is thought to involve impaired IFN-α/β induction by the TLR3 recognition of dsRNA viral intermediates or by-products. However, we show here that human TLR3 controls constitutive levels of IFNB mRNA and secreted bioactive IFN-β protein, and thereby also controls constitutive mRNA levels for IFN-stimulated genes (ISGs) in fibroblasts. Tlr3–/– mouse embryonic fibroblasts also have lower basal ISG levels. Moreover, human TLR3 controls basal levels of IFN-β secretion and ISG mRNA in induced pluripotent stem cell–derived cortical neurons. Consistently, TLR3-deficient human fibroblasts and cortical neurons are vulnerable not only to both VSV and HSV-1, but also to several other families of viruses. The mechanism by which TLR3 restricts viral growth in human fibroblasts and cortical neurons in vitro and, by inference, by which the human CNS prevents infection by HSV-1 in vivo, is therefore based on the control of early viral infection by basal IFN-β immunity.

Authors

Daxing Gao, Michael J. Ciancanelli, Peng Zhang, Oliver Harschnitz, Vincent Bondet, Mary Hasek, Jie Chen, Xin Mu, Yuval Itan, Aurélie Cobat, Vanessa Sancho-Shimizu, Benedetta Bigio, Lazaro Lorenzo, Gabriele Ciceri, Jessica McAlpine, Esperanza Anguiano, Emmanuelle Jouanguy, Damien Chaussabel, Isabelle Meyts, Michael S. Diamond, Laurent Abel, Sun Hur, Gregory A. Smith, Luigi Notarangelo, Darragh Duffy, Lorenz Studer, Jean-Laurent Casanova, Shen-Ying Zhang

×

Zeb1 modulates hematopoietic stem cell fates required for suppressing acute myeloid leukemia
Alhomidi Almotiri, … , Florian A. Siebzehnrubl, Neil P. Rodrigues
Alhomidi Almotiri, … , Florian A. Siebzehnrubl, Neil P. Rodrigues
Published October 27, 2020
Citation Information: J Clin Invest. 2021;131(1):e129115. https://doi.org/10.1172/JCI129115.
View: Text | PDF

Zeb1 modulates hematopoietic stem cell fates required for suppressing acute myeloid leukemia

  • Text
  • PDF
Abstract

Zeb1, a zinc finger E-box binding homeobox epithelial-mesenchymal transition (EMT) transcription factor, confers properties of “stemness,” such as self-renewal, in cancer. Yet little is known about the function of Zeb1 in adult stem cells. Here, we used the hematopoietic system as a well-established paradigm of stem cell biology to evaluate Zeb1-mediated regulation of adult stem cells. We employed a conditional genetic approach using the Mx1-Cre system to specifically knock out (KO) Zeb1 in adult hematopoietic stem cells (HSCs) and their downstream progeny. Acute genetic deletion of Zeb1 led to rapid-onset thymic atrophy and apoptosis-driven loss of thymocytes and T cells. A profound cell-autonomous self-renewal defect and multilineage differentiation block were observed in Zeb1-KO HSCs. Loss of Zeb1 in HSCs activated transcriptional programs of deregulated HSC maintenance and multilineage differentiation genes and of cell polarity consisting of cytoskeleton-, lipid metabolism/lipid membrane–, and cell adhesion–related genes. Notably, epithelial cell adhesion molecule (EpCAM) expression was prodigiously upregulated in Zeb1-KO HSCs, which correlated with enhanced cell survival, diminished mitochondrial metabolism, ribosome biogenesis, and differentiation capacity and an activated transcriptomic signature associated with acute myeloid leukemia (AML) signaling. ZEB1 expression was downregulated in AML patients, and Zeb1 KO in the malignant counterparts of HSCs — leukemic stem cells (LSCs) — accelerated MLL-AF9– and Meis1a/Hoxa9-driven AML progression, implicating Zeb1 as a tumor suppressor in AML LSCs. Thus, Zeb1 acts as a transcriptional regulator in hematopoiesis, critically coordinating HSC self-renewal, apoptotic, and multilineage differentiation fates required to suppress leukemic potential in AML.

Authors

Alhomidi Almotiri, Hamed Alzahrani, Juan Bautista Menendez-Gonzalez, Ali Abdelfattah, Badi Alotaibi, Lubaid Saleh, Adelle Greene, Mia Georgiou, Alex Gibbs, Amani Alsayari, Sarab Taha, Leigh-anne Thomas, Dhruv Shah, Sarah Edkins, Peter Giles, Marc P. Stemmler, Simone Brabletz, Thomas Brabletz, Ashleigh S. Boyd, Florian A. Siebzehnrubl, Neil P. Rodrigues

×

Guanosine triphosphate links MYC-dependent metabolic and ribosome programs in small-cell lung cancer
Fang Huang, … , John D. Minna, Ralph J. DeBerardinis
Fang Huang, … , John D. Minna, Ralph J. DeBerardinis
Published October 20, 2020
Citation Information: J Clin Invest. 2021;131(1):e139929. https://doi.org/10.1172/JCI139929.
View: Text | PDF

Guanosine triphosphate links MYC-dependent metabolic and ribosome programs in small-cell lung cancer

  • Text
  • PDF
Abstract

MYC stimulates both metabolism and protein synthesis, but how cells coordinate these complementary programs is unknown. Previous work reported that, in a subset of small-cell lung cancer (SCLC) cell lines, MYC activates guanosine triphosphate (GTP) synthesis and results in sensitivity to inhibitors of the GTP synthesis enzyme inosine monophosphate dehydrogenase (IMPDH). Here, we demonstrated that primary MYChi human SCLC tumors also contained abundant guanosine nucleotides. We also found that elevated MYC in SCLCs with acquired chemoresistance rendered these otherwise recalcitrant tumors dependent on IMPDH. Unexpectedly, our data indicated that IMPDH linked the metabolic and protein synthesis outputs of oncogenic MYC. Coexpression analysis placed IMPDH within the MYC-driven ribosome program, and GTP depletion prevented RNA polymerase I (Pol I) from localizing to ribosomal DNA. Furthermore, the GTPases GPN1 and GPN3 were upregulated by MYC and directed Pol I to ribosomal DNA. Constitutively GTP-bound GPN1/3 mutants mitigated the effect of GTP depletion on Pol I, protecting chemoresistant SCLC cells from IMPDH inhibition. GTP therefore functioned as a metabolic gate tethering MYC-dependent ribosome biogenesis to nucleotide sufficiency through GPN1 and GPN3. IMPDH dependence is a targetable vulnerability in chemoresistant MYChi SCLC.

Authors

Fang Huang, Kenneth E. Huffman, Zixi Wang, Xun Wang, Kailong Li, Feng Cai, Chendong Yang, Ling Cai, Terry S. Shih, Lauren G. Zacharias, Andrew Chung, Qian Yang, Milind D. Chalishazar, Abbie S. Ireland, C. Allison Stewart, Kasey Cargill, Luc Girard, Yi Liu, Min Ni, Jian Xu, Xudong Wu, Hao Zhu, Benjamin Drapkin, Lauren A. Byers, Trudy G. Oliver, Adi F. Gazdar, John D. Minna, Ralph J. DeBerardinis

×

Neutrophilic inflammation during lung development disrupts elastin assembly and predisposes adult mice to COPD
John T. Benjamin, … , Susan H. Guttentag, Timothy S. Blackwell
John T. Benjamin, … , Susan H. Guttentag, Timothy S. Blackwell
Published October 27, 2020
Citation Information: J Clin Invest. 2021;131(1):e139481. https://doi.org/10.1172/JCI139481.
View: Text | PDF

Neutrophilic inflammation during lung development disrupts elastin assembly and predisposes adult mice to COPD

  • Text
  • PDF
Abstract

Emerging evidence indicates that early life events can increase the risk for developing chronic obstructive pulmonary disease (COPD). Using an inducible transgenic mouse model for NF-κB activation in the airway epithelium, we found that a brief period of inflammation during the saccular stage (P3–P5) but not alveolar stage (P10–P12) of lung development disrupted elastic fiber assembly, resulting in permanent reduction in lung function and development of a COPD-like lung phenotype that progressed through 24 months of age. Neutrophil depletion prevented disruption of elastic fiber assembly and restored normal lung development. Mechanistic studies uncovered a role for neutrophil elastase (NE) in downregulating expression of critical elastic fiber assembly components, particularly fibulin-5 and elastin. Further, purified human NE and NE-containing exosomes from tracheal aspirates of premature infants with lung inflammation downregulated elastin and fibulin-5 expression by saccular-stage mouse lung fibroblasts. Together, our studies define a critical developmental window for assembling the elastin scaffold in the distal lung, which is required to support lung structure and function throughout the lifespan. Although neutrophils play a well-recognized role in COPD development in adults, neutrophilic inflammation may also contribute to early-life predisposition to COPD.

Authors

John T. Benjamin, Erin J. Plosa, Jennifer M.S. Sucre, Riet van der Meer, Shivangi Dave, Sergey Gutor, David S. Nichols, Peter M. Gulleman, Christopher S. Jetter, Wei Han, Matthew Xin, Peter C. Dinella, Ashley Catanzarite, Seunghyi Kook, Kalsang Dolma, Charitharth V. Lal, Amit Gaggar, J. Edwin Blalock, Dawn C. Newcomb, Bradley W. Richmond, Jonathan A. Kropski, Lisa R. Young, Susan H. Guttentag, Timothy S. Blackwell

×

Deubiquitinase USP7 contributes to the pathogenicity of spinal and bulbar muscular atrophy
Anna Pluciennik, … , Sokol V. Todi, Diane E. Merry
Anna Pluciennik, … , Sokol V. Todi, Diane E. Merry
Published November 10, 2020
Citation Information: J Clin Invest. 2021;131(1):e134565. https://doi.org/10.1172/JCI134565.
View: Text | PDF

Deubiquitinase USP7 contributes to the pathogenicity of spinal and bulbar muscular atrophy

  • Text
  • PDF
Abstract

Polyglutamine (polyQ) diseases are devastating, slowly progressing neurodegenerative conditions caused by expansion of polyQ-encoding CAG repeats within the coding regions of distinct, unrelated genes. In spinal and bulbar muscular atrophy (SBMA), polyQ expansion within the androgen receptor (AR) causes progressive neuromuscular toxicity, the molecular basis of which is unclear. Using quantitative proteomics, we identified changes in the AR interactome caused by polyQ expansion. We found that the deubiquitinase USP7 preferentially interacts with polyQ-expanded AR and that lowering USP7 levels reduced mutant AR aggregation and cytotoxicity in cell models of SBMA. Moreover, USP7 knockdown suppressed disease phenotypes in SBMA and spinocerebellar ataxia type 3 (SCA3) fly models, and monoallelic knockout of Usp7 ameliorated several motor deficiencies in transgenic SBMA mice. USP7 overexpression resulted in reduced AR ubiquitination, indicating the direct action of USP7 on AR. Using quantitative proteomics, we identified the ubiquitinated lysine residues on mutant AR that are regulated by USP7. Finally, we found that USP7 also differentially interacts with mutant Huntingtin (HTT) protein in striatum and frontal cortex of a knockin mouse model of Huntington’s disease. Taken together, our findings reveal a critical role for USP7 in the pathophysiology of SBMA and suggest a similar role in SCA3 and Huntington’s disease.

Authors

Anna Pluciennik, Yuhong Liu, Elana Molotsky, Gregory B. Marsh, Bedri Ranxhi, Frederick J. Arnold, Sophie St.-Cyr, Beverly Davidson, Naemeh Pourshafie, Andrew P. Lieberman, Wei Gu, Sokol V. Todi, Diane E. Merry

×

The matrix metalloproteinase inhibitor IPR-179 has antiseizure and antiepileptogenic effects
Diede W.M. Broekaart, … , Alexander Dityatev, Erwin A. van Vliet
Diede W.M. Broekaart, … , Alexander Dityatev, Erwin A. van Vliet
Published November 3, 2020
Citation Information: J Clin Invest. 2021;131(1):e138332. https://doi.org/10.1172/JCI138332.
View: Text | PDF

The matrix metalloproteinase inhibitor IPR-179 has antiseizure and antiepileptogenic effects

  • Text
  • PDF
Abstract

Matrix metalloproteinases (MMPs) are synthesized by neurons and glia and released into the extracellular space, where they act as modulators of neuroplasticity and neuroinflammatory agents. Development of epilepsy (epileptogenesis) is associated with increased expression of MMPs, and therefore, they may represent potential therapeutic drug targets. Using quantitative PCR (qPCR) and immunohistochemistry, we studied the expression of MMPs and their endogenous inhibitors tissue inhibitors of metalloproteinases (TIMPs) in patients with status epilepticus (SE) or temporal lobe epilepsy (TLE) and in a rat TLE model. Furthermore, we tested the MMP2/9 inhibitor IPR-179 in the rapid-kindling rat model and in the intrahippocampal kainic acid mouse model. In both human and experimental epilepsy, MMP and TIMP expression were persistently dysregulated in the hippocampus compared with in controls. IPR-179 treatment reduced seizure severity in the rapid-kindling model and reduced the number of spontaneous seizures in the kainic acid model (during and up to 7 weeks after delivery) without side effects while improving cognitive behavior. Moreover, our data suggest that IPR-179 prevented an MMP2/9-dependent switch-off normally restraining network excitability during the activity period. Since increased MMP expression is a prominent hallmark of the human epileptogenic brain and the MMP inhibitor IPR-179 exhibits antiseizure and antiepileptogenic effects in rodent epilepsy models and attenuates seizure-induced cognitive decline, it deserves further investigation in clinical trials.

Authors

Diede W.M. Broekaart, Alexandra Bertran, Shaobo Jia, Anatoly Korotkov, Oleg Senkov, Anika Bongaarts, James D. Mills, Jasper J. Anink, Jesús Seco, Johannes C. Baayen, Sander Idema, Elodie Chabrol, Albert J. Becker, Wytse J. Wadman, Teresa Tarragó, Jan A. Gorter, Eleonora Aronica, Roger Prades, Alexander Dityatev, Erwin A. van Vliet

×

Defective lysosome reformation during autophagy causes skeletal muscle disease
Meagan J. McGrath, … , Catriona A. McLean, Christina A. Mitchell
Meagan J. McGrath, … , Catriona A. McLean, Christina A. Mitchell
Published October 29, 2020
Citation Information: J Clin Invest. 2021;131(1):e135124. https://doi.org/10.1172/JCI135124.
View: Text | PDF

Defective lysosome reformation during autophagy causes skeletal muscle disease

  • Text
  • PDF
Abstract

The regulation of autophagy-dependent lysosome homeostasis in vivo is unclear. We showed that the inositol polyphosphate 5-phosphatase INPP5K regulates autophagic lysosome reformation (ALR), a lysosome recycling pathway, in muscle. INPP5K hydrolyzes phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] to phosphatidylinositol 4-phosphate [PI(4)P], and INPP5K mutations cause muscular dystrophy by unknown mechanisms. We report that loss of INPP5K in muscle caused severe disease, autophagy inhibition, and lysosome depletion. Reduced PI(4,5)P2 turnover on autolysosomes in Inpp5k–/– muscle suppressed autophagy and lysosome repopulation via ALR inhibition. Defective ALR in Inpp5k–/– myoblasts was characterized by enlarged autolysosomes and the persistence of hyperextended reformation tubules, structures that participate in membrane recycling to form lysosomes. Reduced disengagement of the PI(4,5)P2 effector clathrin was observed on reformation tubules, which we propose interfered with ALR completion. Inhibition of PI(4,5)P2 synthesis or expression of WT INPP5K but not INPP5K disease mutants in INPP5K-depleted myoblasts restored lysosomal homeostasis. Therefore, bidirectional interconversion of PI(4)P/PI(4,5)P2 on autolysosomes was integral to lysosome replenishment and autophagy function in muscle. Activation of TFEB-dependent de novo lysosome biogenesis did not compensate for loss of ALR in Inpp5k–/– muscle, revealing a dependence on this lysosome recycling pathway. Therefore, in muscle, ALR is indispensable for lysosome homeostasis during autophagy and when defective is associated with muscular dystrophy.

Authors

Meagan J. McGrath, Matthew J. Eramo, Rajendra Gurung, Absorn Sriratana, Stefan M. Gehrig, Gordon S. Lynch, Sonia Raveena Lourdes, Frank Koentgen, Sandra J. Feeney, Michael Lazarou, Catriona A. McLean, Christina A. Mitchell

×

Hypothalamic REV-ERB nuclear receptors control diurnal food intake and leptin sensitivity in diet-induced obese mice
Marine Adlanmerini, … , Matthew R. Hayes, Mitchell A. Lazar
Marine Adlanmerini, … , Matthew R. Hayes, Mitchell A. Lazar
Published October 6, 2020
Citation Information: J Clin Invest. 2021;131(1):e140424. https://doi.org/10.1172/JCI140424.
View: Text | PDF

Hypothalamic REV-ERB nuclear receptors control diurnal food intake and leptin sensitivity in diet-induced obese mice

  • Text
  • PDF
Abstract

Obesity occurs when energy expenditure is outweighed by energy intake. Tuberal hypothalamic nuclei, including the arcuate nucleus (ARC), ventromedial nucleus (VMH), and dorsomedial nucleus (DMH), control food intake and energy expenditure. Here we report that, in contrast with females, male mice lacking circadian nuclear receptors REV-ERBα and –β in the tuberal hypothalamus (HDKO mice) gained excessive weight on an obesogenic high-fat diet due to both decreased energy expenditure and increased food intake during the light phase. Moreover, rebound food intake after fasting was markedly increased in HDKO mice. Integrative transcriptomic and cistromic analyses revealed that such disruption in feeding behavior was due to perturbed REV-ERB–dependent leptin signaling in the ARC. Indeed, in vivo leptin sensitivity was impaired in HDKO mice on an obesogenic diet in a diurnal manner. Thus, REV-ERBs play a crucial role in hypothalamic control of food intake and diurnal leptin sensitivity in diet-induced obesity.

Authors

Marine Adlanmerini, Hoang C.B. Nguyen, Brianna M. Krusen, Clare W. Teng, Caroline E. Geisler, Lindsey C. Peed, Bryce J. Carpenter, Matthew R. Hayes, Mitchell A. Lazar

×
  • ← Previous
  • 1
  • 2
  • 3
  • 4
  • …
  • 2402
  • 2403
  • Next →

No posts were found with this tag.

Advertisement
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts