Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Research Article

  • 25,754 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 399
  • 400
  • 401
  • …
  • 2575
  • 2576
  • Next →
Cognate antigen directs CD8+ T cell migration to vascularized transplants
Jeffrey M. Walch, Qiang Zeng, Qi Li, Martin H. Oberbarnscheidt, Rosemary A. Hoffman, Amanda L. Williams, David M. Rothstein, Warren D. Shlomchik, Jiyun V. Kim, Geoffrey Camirand, Fadi G. Lakkis
Jeffrey M. Walch, Qiang Zeng, Qi Li, Martin H. Oberbarnscheidt, Rosemary A. Hoffman, Amanda L. Williams, David M. Rothstein, Warren D. Shlomchik, Jiyun V. Kim, Geoffrey Camirand, Fadi G. Lakkis
View: Text | PDF

Cognate antigen directs CD8+ T cell migration to vascularized transplants

  • Text
  • PDF
Abstract

The migration of effector or memory T cells to the graft is a critical event in the rejection of transplanted organs. The prevailing view is that the key steps involved in T cell migration — integrin-mediated firm adhesion followed by transendothelial migration — are dependent on the activation of Gαi-coupled chemokine receptors on T cells. In contrast to this view, we demonstrated in vivo that cognate antigen was necessary for the firm adhesion and transendothelial migration of CD8+ effector T cells specific to graft antigens and that both steps occurred independent of Gαi signaling. Presentation of cognate antigen by either graft endothelial cells or bone marrow–derived APCs that extend into the capillary lumen was sufficient for T cell migration. The adhesion and transmigration of antigen-nonspecific (bystander) effector T cells, on the other hand, remained dependent on Gαi, but required the presence of antigen-specific effector T cells. These findings underscore the primary role of cognate antigen presented by either endothelial cells or bone marrow–derived APCs in the migration of T cells across endothelial barriers and have important implications for the prevention and treatment of graft rejection.

Authors

Jeffrey M. Walch, Qiang Zeng, Qi Li, Martin H. Oberbarnscheidt, Rosemary A. Hoffman, Amanda L. Williams, David M. Rothstein, Warren D. Shlomchik, Jiyun V. Kim, Geoffrey Camirand, Fadi G. Lakkis

×

The genomic landscape of small intestine neuroendocrine tumors
Michaela S. Banck, Rahul Kanwar, Amit A. Kulkarni, Ganesh K. Boora, Franziska Metge, Benjamin R. Kipp, Lizhi Zhang, Erik C. Thorland, Kay T. Minn, Ramesh Tentu, Bruce W. Eckloff, Eric D. Wieben, Yanhong Wu, Julie M. Cunningham, David M. Nagorney, Judith A. Gilbert, Matthew M. Ames, Andreas S. Beutler
Michaela S. Banck, Rahul Kanwar, Amit A. Kulkarni, Ganesh K. Boora, Franziska Metge, Benjamin R. Kipp, Lizhi Zhang, Erik C. Thorland, Kay T. Minn, Ramesh Tentu, Bruce W. Eckloff, Eric D. Wieben, Yanhong Wu, Julie M. Cunningham, David M. Nagorney, Judith A. Gilbert, Matthew M. Ames, Andreas S. Beutler
View: Text | PDF

The genomic landscape of small intestine neuroendocrine tumors

  • Text
  • PDF
Abstract

Small intestine neuroendocrine tumors (SI-NETs) are the most common malignancy of the small bowel. Several clinical trials target PI3K/Akt/mTOR signaling; however, it is unknown whether these or other genes are genetically altered in these tumors. To address the underlying genetics, we analyzed 48 SI-NETs by massively parallel exome sequencing. We detected an average of 0.1 somatic single nucleotide variants (SNVs) per 106 nucleotides (range, 0–0.59), mostly transitions (C>T and A>G), which suggests that SI-NETs are stable cancers. 197 protein-altering somatic SNVs affected a preponderance of cancer genes, including FGFR2, MEN1, HOOK3, EZH2, MLF1, CARD11, VHL, NONO, and SMAD1. Integrative analysis of SNVs and somatic copy number variations identified recurrently altered mechanisms of carcinogenesis: chromatin remodeling, DNA damage, apoptosis, RAS signaling, and axon guidance. Candidate therapeutically relevant alterations were found in 35 patients, including SRC, SMAD family genes, AURKA, EGFR, HSP90, and PDGFR. Mutually exclusive amplification of AKT1 or AKT2 was the most common event in the 16 patients with alterations of PI3K/Akt/mTOR signaling. We conclude that sequencing-based analysis may provide provisional grouping of SI-NETs by therapeutic targets or deregulated pathways.

Authors

Michaela S. Banck, Rahul Kanwar, Amit A. Kulkarni, Ganesh K. Boora, Franziska Metge, Benjamin R. Kipp, Lizhi Zhang, Erik C. Thorland, Kay T. Minn, Ramesh Tentu, Bruce W. Eckloff, Eric D. Wieben, Yanhong Wu, Julie M. Cunningham, David M. Nagorney, Judith A. Gilbert, Matthew M. Ames, Andreas S. Beutler

×

PD-L1 blockade synergizes with IL-2 therapy in reinvigorating exhausted T cells
Erin E. West, Hyun-Tak Jin, Ata-Ur Rasheed, Pablo Penaloza-MacMaster, Sang-Jun Ha, Wendy G. Tan, Ben Youngblood, Gordon J. Freeman, Kendall A. Smith, Rafi Ahmed
Erin E. West, Hyun-Tak Jin, Ata-Ur Rasheed, Pablo Penaloza-MacMaster, Sang-Jun Ha, Wendy G. Tan, Ben Youngblood, Gordon J. Freeman, Kendall A. Smith, Rafi Ahmed
View: Text | PDF

PD-L1 blockade synergizes with IL-2 therapy in reinvigorating exhausted T cells

  • Text
  • PDF
Abstract

The inhibitory receptor programmed cell death 1 (PD-1) plays a major role in functional exhaustion of T cells during chronic infections and cancer, and recent clinical data suggest that blockade of the PD-1 pathway is an effective immunotherapy in treating certain cancers. Thus, it is important to define combinatorial approaches that increase the efficacy of PD-1 blockade. To address this issue, we examined the effect of IL-2 and PD-1 ligand 1 (PD-L1) blockade in the mouse model of chronic lymphocytic choriomeningitis virus (LCMV) infection. We found that low-dose IL-2 administration alone enhanced CD8+ T cell responses in chronically infected mice. IL-2 treatment also decreased inhibitory receptor levels on virus-specific CD8+ T cells and increased expression of CD127 and CD44, resulting in a phenotype resembling that of memory T cells. Surprisingly, IL-2 therapy had only a minimal effect on reducing viral load. However, combining IL-2 treatment with blockade of the PD-1 inhibitory pathway had striking synergistic effects in enhancing virus-specific CD8+ T cell responses and decreasing viral load. Interestingly, this reduction in viral load occurred despite increased numbers of Tregs. These results suggest that combined IL-2 therapy and PD-L1 blockade merits consideration as a regimen for treating human chronic infections and cancer.

Authors

Erin E. West, Hyun-Tak Jin, Ata-Ur Rasheed, Pablo Penaloza-MacMaster, Sang-Jun Ha, Wendy G. Tan, Ben Youngblood, Gordon J. Freeman, Kendall A. Smith, Rafi Ahmed

×

Lamin B1 mediates cell-autonomous neuropathology in a leukodystrophy mouse model
Mary Y. Heng, Shu-Ting Lin, Laure Verret, Yong Huang, Sherry Kamiya, Quasar S. Padiath, Ying Tong, Jorge J. Palop, Eric J. Huang, Louis J. Ptáček, Ying-Hui Fu
Mary Y. Heng, Shu-Ting Lin, Laure Verret, Yong Huang, Sherry Kamiya, Quasar S. Padiath, Ying Tong, Jorge J. Palop, Eric J. Huang, Louis J. Ptáček, Ying-Hui Fu
View: Text | PDF

Lamin B1 mediates cell-autonomous neuropathology in a leukodystrophy mouse model

  • Text
  • PDF
Abstract

Adult-onset autosomal-dominant leukodystrophy (ADLD) is a progressive and fatal neurological disorder characterized by early autonomic dysfunction, cognitive impairment, pyramidal tract and cerebellar dysfunction, and white matter loss in the central nervous system. ADLD is caused by duplication of the LMNB1 gene, which results in increased lamin B1 transcripts and protein expression. How duplication of LMNB1 leads to myelin defects is unknown. To address this question, we developed a mouse model of ADLD that overexpresses lamin B1. These mice exhibited cognitive impairment and epilepsy, followed by age-dependent motor deficits. Selective overexpression of lamin B1 in oligodendrocytes also resulted in marked motor deficits and myelin defects, suggesting these deficits are cell autonomous. Proteomic and genome-wide transcriptome studies indicated that lamin B1 overexpression is associated with downregulation of proteolipid protein, a highly abundant myelin sheath component that was previously linked to another myelin-related disorder, Pelizaeus-Merzbacher disease. Furthermore, we found that lamin B1 overexpression leads to reduced occupancy of Yin Yang 1 transcription factor at the promoter region of proteolipid protein. These studies identify a mechanism by which lamin B1 overexpression mediates oligodendrocyte cell–autonomous neuropathology in ADLD and implicate lamin B1 as an important regulator of myelin formation and maintenance during aging.

Authors

Mary Y. Heng, Shu-Ting Lin, Laure Verret, Yong Huang, Sherry Kamiya, Quasar S. Padiath, Ying Tong, Jorge J. Palop, Eric J. Huang, Louis J. Ptáček, Ying-Hui Fu

×

Safe TNF-based antitumor therapy following p55TNFR reduction in intestinal epithelium
Filip Van Hauwermeiren, Marietta Armaka, Niki Karagianni, Ksanthi Kranidioti, Roosmarijn E. Vandenbroucke, Sonja Loges, Maarten Van Roy, Jan Staelens, Leen Puimège, Ajay Palagani, Wim Vanden Berghe, Panayiotis Victoratos, Peter Carmeliet, Claude Libert, George Kollias
Filip Van Hauwermeiren, Marietta Armaka, Niki Karagianni, Ksanthi Kranidioti, Roosmarijn E. Vandenbroucke, Sonja Loges, Maarten Van Roy, Jan Staelens, Leen Puimège, Ajay Palagani, Wim Vanden Berghe, Panayiotis Victoratos, Peter Carmeliet, Claude Libert, George Kollias
View: Text | PDF

Safe TNF-based antitumor therapy following p55TNFR reduction in intestinal epithelium

  • Text
  • PDF
Abstract

TNF has remarkable antitumor activities; however, therapeutic applications have not been possible because of the systemic and lethal proinflammatory effects induced by TNF. Both the antitumor and inflammatory effects of TNF are mediated by the TNF receptor p55 (p55TNFR) (encoded by the Tnfrsf1a gene). The antitumor effect stems from an induction of cell death in tumor endothelium, but the cell type that initiates the lethal inflammatory cascade has been unclear. Using conditional Tnfrsf1a knockout or reactivation mice, we found that the expression level of p55TNFR in intestinal epithelial cells (IECs) is a crucial determinant in TNF-induced lethal inflammation. Remarkably, tumor endothelium and IECs exhibited differential sensitivities to TNF when p55TNFR levels were reduced. Tumor-bearing Tnfrsf1a+/– or IEC-specific p55TNFR-deficient mice showed resistance to TNF-induced lethality, while the tumor endothelium remained fully responsive to TNF-induced apoptosis and tumors regressed. We demonstrate proof of principle for clinical application of this approach using neutralizing anti-human p55TNFR antibodies in human TNFRSF1A knockin mice. Our results uncover an important cellular basis of TNF toxicity and reveal that IEC-specific or systemic reduction of p55TNFR mitigates TNF toxicity without loss of antitumor efficacy.

Authors

Filip Van Hauwermeiren, Marietta Armaka, Niki Karagianni, Ksanthi Kranidioti, Roosmarijn E. Vandenbroucke, Sonja Loges, Maarten Van Roy, Jan Staelens, Leen Puimège, Ajay Palagani, Wim Vanden Berghe, Panayiotis Victoratos, Peter Carmeliet, Claude Libert, George Kollias

×

Apolipoproteins E and AV mediate lipoprotein clearance by hepatic proteoglycans
Jon C. Gonzales, Philip L.S.M. Gordts, Erin M. Foley, Jeffrey D. Esko
Jon C. Gonzales, Philip L.S.M. Gordts, Erin M. Foley, Jeffrey D. Esko
View: Text | PDF

Apolipoproteins E and AV mediate lipoprotein clearance by hepatic proteoglycans

  • Text
  • PDF
Abstract

The heparan sulfate proteoglycan (HSPG) syndecan-1 (SDC1) acts as a major receptor for triglyceride-rich lipoprotein (TRL) clearance in the liver. We sought to identify the relevant apolipoproteins on TRLs that mediate binding to SDC1 and determine their clinical relevance. Evidence supporting ApoE as a major determinant arose from its enrichment in TRLs from mice defective in hepatic heparan sulfate (Ndst1f/fAlbCre+ mice), decreased binding of ApoE-deficient TRLs to HSPGs on human hepatoma cells, and decreased clearance of ApoE-deficient [3H]TRLs in vivo. Evidence for a second ligand was suggested by the faster clearance of ApoE-deficient TRLs after injection into WT Ndst1f/fAlbCre– versus mutant Ndst1f/fAlbCre+ mice and elevated fasting and postprandial plasma triglycerides in compound Apoe–/–Ndst1f/fAlbCre+ mice compared with either single mutant. ApoAV emerged as a candidate based on 6-fold enrichment of ApoAV in TRLs accumulating in Ndst1f/fAlbCre+ mice, decreased binding of TRLs to proteoglycans after depletion of ApoAV or addition of anti-ApoAV mAb, and decreased heparan sulfate–dependent binding of ApoAV-deficient particles to hepatocytes. Importantly, disruption of hepatic heparan sulfate–mediated clearance increased atherosclerosis. We conclude that clearance of TRLs by hepatic HSPGs is atheroprotective and mediated by multivalent binding to ApoE and ApoAV.

Authors

Jon C. Gonzales, Philip L.S.M. Gordts, Erin M. Foley, Jeffrey D. Esko

×

Nuclear receptor/microRNA circuitry links muscle fiber type to energy metabolism
Zhenji Gan, John Rumsey, Bethany C. Hazen, Ling Lai, Teresa C. Leone, Rick B. Vega, Hui Xie, Kevin E. Conley, Johan Auwerx, Steven R. Smith, Eric N. Olson, Anastasia Kralli, Daniel P. Kelly
Zhenji Gan, John Rumsey, Bethany C. Hazen, Ling Lai, Teresa C. Leone, Rick B. Vega, Hui Xie, Kevin E. Conley, Johan Auwerx, Steven R. Smith, Eric N. Olson, Anastasia Kralli, Daniel P. Kelly
View: Text | PDF

Nuclear receptor/microRNA circuitry links muscle fiber type to energy metabolism

  • Text
  • PDF
Abstract

The mechanisms involved in the coordinate regulation of the metabolic and structural programs controlling muscle fitness and endurance are unknown. Recently, the nuclear receptor PPARβ/δ was shown to activate muscle endurance programs in transgenic mice. In contrast, muscle-specific transgenic overexpression of the related nuclear receptor, PPARα, results in reduced capacity for endurance exercise. We took advantage of the divergent actions of PPARβ/δ and PPARα to explore the downstream regulatory circuitry that orchestrates the programs linking muscle fiber type with energy metabolism. Our results indicate that, in addition to the well-established role in transcriptional control of muscle metabolic genes, PPARβ/δ and PPARα participate in programs that exert opposing actions upon the type I fiber program through a distinct muscle microRNA (miRNA) network, dependent on the actions of another nuclear receptor, estrogen-related receptor γ (ERRγ). Gain-of-function and loss-of-function strategies in mice, together with assessment of muscle biopsies from humans, demonstrated that type I muscle fiber proportion is increased via the stimulatory actions of ERRγ on the expression of miR-499 and miR-208b. This nuclear receptor/miRNA regulatory circuit shows promise for the identification of therapeutic targets aimed at maintaining muscle fitness in a variety of chronic disease states, such as obesity, skeletal myopathies, and heart failure.

Authors

Zhenji Gan, John Rumsey, Bethany C. Hazen, Ling Lai, Teresa C. Leone, Rick B. Vega, Hui Xie, Kevin E. Conley, Johan Auwerx, Steven R. Smith, Eric N. Olson, Anastasia Kralli, Daniel P. Kelly

×

Endocytosis of synaptic ADAM10 in neuronal plasticity and Alzheimer’s disease
Elena Marcello, Claudia Saraceno, Stefano Musardo, Hugo Vara, Alerie Guzman de la Fuente, Silvia Pelucchi, Daniele Di Marino, Barbara Borroni, Anna Tramontano, Isabel Pérez-Otaño, Alessandro Padovani, Maurizio Giustetto, Fabrizio Gardoni, Monica Di Luca
Elena Marcello, Claudia Saraceno, Stefano Musardo, Hugo Vara, Alerie Guzman de la Fuente, Silvia Pelucchi, Daniele Di Marino, Barbara Borroni, Anna Tramontano, Isabel Pérez-Otaño, Alessandro Padovani, Maurizio Giustetto, Fabrizio Gardoni, Monica Di Luca
View: Text | PDF

Endocytosis of synaptic ADAM10 in neuronal plasticity and Alzheimer’s disease

  • Text
  • PDF
Abstract

A disintegrin and metalloproteinase 10 (ADAM10), a disintegrin and metalloproteinase that resides in the postsynaptic densities (PSDs) of excitatory synapses, has previously been shown to limit β-amyloid peptide (Aβ) formation in Alzheimer’s disease (AD). ADAM10 also plays a critical role in regulating functional membrane proteins at the synapse. Using human hippocampal homogenates, we found that ADAM10 removal from the plasma membrane was mediated by clathrin-dependent endocytosis. Additionally, we identified the clathrin adaptor AP2 as an interacting partner of a previously uncharacterized atypical binding motif in the ADAM10 C-terminal domain. This domain was required for ADAM10 endocytosis and modulation of its plasma membrane levels. We found that the ADAM10/AP2 association was increased in the hippocampi of AD patients compared with healthy controls. Long-term potentiation (LTP) in hippocampal neuronal cultures induced ADAM10 endocytosis through AP2 association and decreased surface ADAM10 levels and activity. Conversely, long-term depression (LTD) promoted ADAM10 synaptic membrane insertion and stimulated its activity. ADAM10 interaction with the synapse-associated protein-97 (SAP97) was necessary for LTD-induced ADAM10 trafficking and required for LTD maintenance and LTD-induced changes in spine morphogenesis. These data identify and characterize a mechanism controlling ADAM10 localization and activity at excitatory synapses that is relevant to AD pathogenesis.

Authors

Elena Marcello, Claudia Saraceno, Stefano Musardo, Hugo Vara, Alerie Guzman de la Fuente, Silvia Pelucchi, Daniele Di Marino, Barbara Borroni, Anna Tramontano, Isabel Pérez-Otaño, Alessandro Padovani, Maurizio Giustetto, Fabrizio Gardoni, Monica Di Luca

×

BMPR2 is required for postimplantation uterine function and pregnancy maintenance
Takashi Nagashima, Qinglei Li, Caterina Clementi, John P. Lydon, Francesco J. DeMayo, Martin M. Matzuk
Takashi Nagashima, Qinglei Li, Caterina Clementi, John P. Lydon, Francesco J. DeMayo, Martin M. Matzuk
View: Text | PDF

BMPR2 is required for postimplantation uterine function and pregnancy maintenance

  • Text
  • PDF
Abstract

Abnormalities in cell-cell communication and growth factor signaling pathways can lead to defects in maternal-fetal interactions during pregnancy, including immunologic rejection of the fetal/placental unit. In this study, we discovered that bone morphogenetic protein receptor type 2 (BMPR2) is essential for postimplantation physiology and fertility. Despite normal implantation and early placental/fetal development, deletion of Bmpr2 in the uterine deciduae of mice triggered midgestation abnormalities in decidualization that resulted in abnormal vascular development, trophoblast defects, and a deficiency of uterine natural killer cells. Absence of BMPR2 signaling in the uterine decidua consequently suppressed IL-15, VEGF, angiopoietin, and corin signaling. Disruption of these pathways collectively lead to placental abruption, fetal demise, and female sterility, thereby placing BMPR2 at a central point in the regulation of several physiologic signaling pathways and events at the maternal-fetal interface. Since trophoblast invasion and uterine vascular modification are implicated in normal placentation and fetal growth in humans, our findings suggest that abnormalities in uterine BMPR2-mediated signaling pathways can have catastrophic consequences in women for the maintenance of pregnancy.

Authors

Takashi Nagashima, Qinglei Li, Caterina Clementi, John P. Lydon, Francesco J. DeMayo, Martin M. Matzuk

×

Acylglycerol kinase augments JAK2/STAT3 signaling in esophageal squamous cells
Xiuting Chen, Zhe Ying, Xi Lin, Huanxin Lin, Jueheng Wu, Mengfeng Li, Libing Song
Xiuting Chen, Zhe Ying, Xi Lin, Huanxin Lin, Jueheng Wu, Mengfeng Li, Libing Song
View: Text | PDF

Acylglycerol kinase augments JAK2/STAT3 signaling in esophageal squamous cells

  • Text
  • PDF
Abstract

JAK2 activity is tightly controlled through a self-inhibitory effect via its JAK homology domain 2 (JH2), which restricts the strength and duration of JAK2/STAT3 signaling under physiological conditions. Although multiple mutations within JAK2, which abrogate the function of JH2 and sustain JAK2 activation, are widely observed in hematological malignancies, comparable mutations have not been detected in solid tumors. How solid tumor cells override the autoinhibitory effect of the JH2 domain to maintain constitutive activation of JAK2/STAT3 signaling remains puzzling. Herein, we demonstrate that AGK directly interacted with the JH2 domain to relieve inhibition of JAK2 and activate JAK2/STAT3 signaling. Overexpression of AGK sustained constitutive JAK2/STAT3 activation, consequently promoting the cancer stem cell population and augmenting the tumorigenicity of esophageal squamous cell carcinoma (ESCC) cells both in vivo and in vitro. Furthermore, AGK levels significantly correlated with increased STAT3 phosphorylation, poorer disease-free survival, and shorter overall survival in primary ESCC. More importantly, AGK expression was significantly correlated with JAK2/STAT3 hyperactivation in ESCC, as well as in lung and breast cancer. These findings uncover a mechanism for constitutive activation of JAK2/STAT3 signaling in solid tumors and may represent a prognostic biomarker and therapeutic target.

Authors

Xiuting Chen, Zhe Ying, Xi Lin, Huanxin Lin, Jueheng Wu, Mengfeng Li, Libing Song

×
  • ← Previous
  • 1
  • 2
  • …
  • 399
  • 400
  • 401
  • …
  • 2575
  • 2576
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts